Как определить полярность молекул

Полярные молекулы — это… что такое полярные молекулы?

ПОЛЯРНЫЕ МОЛЕКУЛЫ

молекулы, обладающие постоянным дипольным моментом в отсутствие внеш. электрич. поля.

Дипольный момент присущ таким молекулам, у к-рых распределение электронного и ядерного зарядов не имеет центра симметрии. Обычно полярность отдельных фрагментов молекулы или хим.

связей между двумя атомами (или большим числом атомов) определяется величиной соответствующего дипольного момента: чем он больше, тем сильнее полярность.

Под влиянием внеш. электрич. поля в-во поляризуется, т. е. в нем возникает дипольный момент единицы объема. У в-в, состоящих из П. м., поляризация обусловлена смещением электронной плотности под влиянием поля и ориентацией молекул в поле.

Ориентации молекул препятствует тепловое движение, поэтому изучение зависимости поляризации от т-ры позволяет определять дипольный момент молекул (ур-ние Ланжевена-Дебая; см. Диэлектрики).

Для двухатомных молекул полярность часто связывают с приближенным представлением электронной волновой ф-ции в рамках валентных связей метода как суммы двух слагаемых, одно из к-рых отвечает ковалентной схеме, другое -ионной валентной схеме.

Такое соотнесение позволяет ввести понятие о степени ковалентности или степени ион-ности хим. связи, причем полярность связи определяется в осн. ионной составляющей. Для многоатомных молекул также возможно подобное приближенное выделение в электронной волновой ф-ции ковалентной и ионной составляющих.

В-ва, образованные сильно П. м., как правило, хорошо раств. в полярных р-рителях, тогда как при отсутствии у молекул сколько-нибудь значит. дипольного момента в-во раств. лишь в неполярных р-рителях. В-ва, включающие сильно полярную концевую группу и объемный неполярный фрагмент (т. наз. дифильные молекулы), обычно относятся к числу поверхностно-активных веществ.

Лит. см. при ст. Дипольный момент. Н. Ф. Степанов.

Химическая энциклопедия. — М.: Советская энциклопедия. Под ред. И. Л. Кнунянца. 1988.

Источник: https://dic.academic.ru/dic.nsf/enc_chemistry/3690/%D0%9F%D0%9E%D0%9B%D0%AF%D0%A0%D0%9D%D0%AB%D0%95

Пример определения типа связи. Пример определения типа гибридизации и полярности молекул. — презентация

1 Пример определения типа связи. Пример определения типа гибридизации и полярности молекул<\p>

2 Графические формулы Показывают порядок связи между атомами в молекуле В бескислородных соединениях атомы элементов чаще всего связаны непосредственно между собой<\p>

3 Например HCl HCl H2SH2S SHH Каждая черточка соответствует единице валентности<\p>

4 продолжение В кислородосодержащих веществах атомы элементов чаще всего соединяются между собой через кислород.<\p>

5 Например NaOH NaOH<\p>

6 продолжение H 2 SO 4 S O O O O H H<\p>

7 Примеры. Определите тип химической связи между атомами в молекулах веществ: гидроксида натрия, серной кислоты, гидроксида мышьяка, сульфата натрия. Покажите стрелкой к какому элементу смещена электронная пара Какая связь более полярна? Каковы степени окисления атомов элементов?<\p>

8 Алгоритм выполнения 1.Изобразить графическую формулу. 2. Под каждым элементом проставить значение электроотрицательности из таблицы. 3. Стрелкой показать смещение электронной плотности. 4. Рассчитать разность относительных электроотрицательностей и указать тип связи (ионная, КП, КНП) 5. По направлению и количеству смещений электронной плотности определить степени окисления атомов элементов.<\p>

9 Пример выполнения NaOH Na OH 0,93 3,5 2, ОЭО(O-Na) ОЭО(O-Na)= 3,5 – 0,93=2,63 ОЭО(О-Н)= 3,5-2,1=1,4 ионная КП<\p>

10 продолжение H 2 SO 4 S O O O O H H ОЭО(О-Н)=3,5-2.1=1.4 КП ОЭО(O-S)=3,5-2,6=0,9 КП<\p>

11 Na 2 SO 4 Выписываем значения ОЭО атомов элементов под их символами Рассчитываем разность ОЭО Определяем тип связи, подчеркиваникм обозначаем более полярную связь Na 2 SO 4 0,97 2,6 3,5 ОЭО(O-Na)=3,5-0,97=…. ОЭО(O-S)=3,5-2,6=…<\p>

12 1.Изобразить графическую формулу. 2. Определить валентность центрального атома. 3. Распределить электроны по орбиталям для соответствующего валентного состоянии центрального атома. Алгоритм определения типа гибридизации.<\p>

13 продолжение 4. В графической формуле молекулы обозначить сигма связи и электронные пары 5. Определить какие и сколько орбиталей участвуют в формировании структуры молекулы. Указать тип гибридизации и полярность молекулы.<\p>

14 Определить тип гибридизации центрального атома в молекулах 1. СН 4 метана 2. NH 3 аммиака 3. Н 2 О Пример С НН Н Н Центральный атом – углерод. В(С)=4 3. …2s 2 2p s 1 2p 3<\p>

15 5. В формировании структуры молекулы участвуют одна s и три p- электронные орбитали. Все связи в молекуле метана одинарные -связи. Тип гибридизации sp 3. Все электронные облака участвующие в гибридизации одинаковы. Следовательно углы между ними одинаковы и =0. Молекула неполярна. Геометрическая форма тетраэдр. Ответ sp 3 -гибридизация =0, неполярная молекула<\p>

16 Молекула аммиака Рассуждая аналогично для молекулы аммиака: 1 N H H H 2. B(N)=3, …2s 2 2p 3 : связи+электронная пара. 5. SР 3 — гибридизация. Электронные облака разного характера. Углы между ними неодинаковы. 0. Молекула полярна.<\p>

17 Молекула воды 2. Кислород В=2. :O: H H s 2 2p 4 4. В молекуле 2 -связи и две электроные пары. В формировании структуры молекулы участвуют s- и три p-электронные орбитали. Тип гибридизации sp 3. 0 (т.к. Углы между электронными облаками различны). Молекула полярна.<\p>

18 Взаимодействия между молекулами. Водородная связь Водородная связь – это особый вид взаимодействия между молекулами веществ. Водородная связь возникает между атомом водорода и другим более электроотрицательным атомом за счет сил электростатического притяжения по донорно-акцепторному механизму.<\p>

19 Вандерваальсово взаимодействие (межмолекулярное взаимодействие) 1873 год голландский ученый И. Ван-дер-Ваальс, предположил, что существуют силы, обусловливвающие притяжение между молекулами. Типы взаимодействия: 1) диполь-дипольное (ориентационное) Взаимодействие полярных молекул. 2) Индукционное. Взаимодействие полярных и неполярных молекул. Энергия этого вида взаимодействия слабее, чем ориентационного. 3)Дисперсионное. В неполярных молекулах (инертные газы) возникают флуктуации электронной плотности, в результате возникают мгновенные диполи, которые могут индуцировать соседние молекулы.<\p>

20 иллюстрация<\p>

Источник: http://www.myshared.ru/slide/374145/

Типы химической связи

Темы кодификатора ЕГЭ: Ковалентная химическая связь, ее разновидности и механизмы образования. Характеристики ковалентной связи (полярность и энергия связи). Ионная связь. Металлическая связь. Водородная связь

Сначала рассмотрим связи, которые возникают между частицами внутри молекул. Такие связи называют внутримолекулярными.

Химическая связь между атомами химических элементов имеет электростатическую природу и образуется за счет взаимодействия внешних (валентных) электронов, в большей или меньшей степени удерживаемых положительно заряженными ядрами связываемых атомов.

Ключевое понятие здесь — ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ. Именно она определяет тип химической связи между атомами и свойства этой связи.

Электроотрицательность χ — это способность атома притягивать (удерживать) внешние (валентные) электроны. Электроотрицательность определяется степенью притяжения внешних электронов к ядру и зависит, преимущественно, от радиуса атома и заряда ядра.

Электроотрицательность сложно определить однозначно. Л.Полинг составил таблицу относительных электроотрицательностей (на основе энергий связей двухатомных молекул). Наиболее электроотрицательный элемент — фтор со значением 4.

Важно отметить, что в различных источниках можно встретить разные шкалы и таблицы значений электроотрицательности. Этого не стоит пугаться, поскольку при образовании химической связи играет роль разность электроотрицательностей атомов, а она примерно одинакова в любой системе.

Если один из атомов в химической связи  А:В сильнее притягивает электроны, то электронная пара смещается к нему. Чем больше разность электроотрицательностей атомов, тем сильнее смещается электронная пара.

Если значения электроотрицательностей взаимодействующих атомов равны или примерно равны: ЭО(А)≈ЭО(В), то общая электронная пара не смещается ни к одному из атомов: А : В. Такая связь называется ковалентной неполярной.

Если электроотрицательности взаимодействующих атомов отличаются, но не сильно (разница электроотрицательностей примерно от 0,4 до 2: 0,4

Источник: http://chemege.ru/chembonds/

Большая Энциклопедия Нефти и Газа

Cтраница 1

Полярность молекул, бесспорно, подтверждается опытами, показавшими отклонение путей молекул, движущихся в электрическом поле.  [1]

Полярность молекул, как и полярность связи, характеризуется величиной дипольного момента. Суммарный дипольный момент молекулы зависит как от характера связи составляющих ее атомов, так и от расположения этих атомов в молекуле. Молекулы, дипольный момент которых равен нулю, а также вещества с такими молекулами называются неполярными.  [3]

Полярность молекулы в целом равна векторной сумме моментов отдельных связей; существуют молекулы, дипольный момент которых равен нулю, хотя они и имеют полярные связи. Это справедливо для всех молекул, где элементы симметрии таковы, что диполи, образованные связями, попарно компенсируются.  [4]

Полярность молекул бесспорно подтверждается опытами, показавшими отклонение путей молекул, движущихся в электрическом поле.  [5]

Дипольные моменты отдельных связей в молекулах типа АВо.  [6]

Полярность молекул оказывает заметное влияние на свойства образуемых ими веществ. Полярные молекулы стремятся ориентироваться по отношению друг к другу разноименно заряженными концами.

Следствием такого диполь-дипольного взаимодействия является взаимное притяжение полярных молекул и упрочнение связей между ними.

Поэтому вещества, образованные полярными молекулами, обладают, как правило, более высокими температурами плавления и кипения, чем вещества, моле-кулы которых неполярны.  [7]

Дипольные моменты отдельных связей в молекулах типа AB3i.  [8]

Полярность молекул оказывает заметное влияние на свойства образуемых ими веществ. Полярные молекулы стремятся ориентироваться по отношению друг к другу разноименно заряженными концами.

Следствием такого диполь-дипольного взаимодействия является взаимное притяжение полярных молекул и упрочнение связей между ними.

Поэтому вещества, образованные полярными молекулами, обладают, как правило, более высокими температурами плавления и кипения, чем вещества, молекулы которых неполярны.  [9]

Полярность молекул оказывает заметное влияние на свойства образуемых ими веществ. Полярные молекулы стремятся ориентироваться по отношению друг к другу разноименно заряженными концами.

Следствием такого диполь-дипольного взаимодействия является взаимное притяжение полярных молекул и упрочнение связей между ними.

 [10]

Полярность молекул оказывает заметное влияние на свойства образуемых ими веществ. Полярные молекулы стремятся ориентироваться по отношению друг к другу разноименно заряженными концами.

Следствием такого диполь-дипольного взаимодействия является взаимное притяжение полярных молекул и упрочнение между ними.

Поэтому вещества, образованные полярными молекулами, обладают, как правило, более высокими температурами плавления и кипения, чем вещества, молекулы которых не-полярны.  [11]

Дипольные моменты отдельных связей в молекулах типа АВа.  [12]

Полярность молекул оказывает заметное влияние на свойства образуемых ими веществ. Полярные молекулы стремятся ориентироваться по отношению друг к другу разноименно заряженными концами.

Следствием такого диполь-дипольного взаимодействия является взаимное притяжение полярных молекул и упрочнение связи между ними.

Поэтому вещества, образованные полярными молекулами, обладают, как правило, более высокими температурами плавления и кипения, чем вещества, молекулы которых неполярны.  [13]

Полярность молекул оказывает заметное влияние на свойства образуемых ими веществ. Полярные молекулы стремятся ориентироваться по отношению друг к другу разноименно заряженными концами.

Следствием такого диполь-диполыюго взаимодействия является взаимное притяжение полярных молекул и упроч — — нение связи между ними.

Поэтому вещества, образованные полярными молекулами, обладают, как правило, более высокими температурами плавления и кипения, чем вещества, молекулы которых неполярны.  [14]

Полярность молекул сообщает особые свойства всему веществу ( диэлектрику), и можно говорить о его электрической поляризации, так как асимметричные молекулы, благодаря несимметричным силовым полям вокруг них, а также под действием внешнего поля, определенно ориентируются. Такая ориентировка наблюдается и около коллоидных частиц.  [15]

Страницы:      1    2    3    4

Источник: http://www.ngpedia.ru/id289373p1.html

Полярность молекул (типы ковалентных молекул)

Следует отличать полярность молекулы от полярности связи. Для двухатомных молекул типа АВ эти понятия совпадают, как это уже показано на примере молекулы HCl.

В таких молекулах чем больше разность электроотрицательностей элементов (∆ЭО), тем больше электрический момент диполя.

К примеру, в ряду HF, HCl, HBr, HI он уменьшается в той же последовательности, как и относительная электроотрицательность.

Молекулы бывают полярными и неполярными исходя из характера распределœения электронной плотности молекулы.

Полярность молекул характеризуется значением электрического момента диполя μм, который равен векторной сумме электрических моментов диполей всœех связей и несвязывающих электронных пар в молекулах.

Результат сложения зависит от полярности связей, геометрического строения молекулы, наличия неподелœенных электронных пар.

Большое влияние на полярность молекулы оказывает её симметрия.

К примеру, молекула СО2 имеет симметричное линœейное строение:

.

По этой причине, хотя связи С=О и имеют сильно полярный характер, вследствие взаимной компенсации их электрических моментов диполя молекула СО2 в целом неполярна (). По этой же причинœе неполярны высокосимметричные тетраэдрические молекулы СН4, СF4, октаэдрическая молекула SF6 и т. д.

Напротив, в угловой молекуле Н2О полярные связи О–Н располагаются под углом 104,5º. По этой причине их моменты взаимно не компенсируются и молекула оказывается полярной ().

Электрическим моментом диполя обладают также угловая молекула SO2, пирамидальные молекулы NH3, NF3 и т. д. Отсутствие такого момента

свидетельствует о высокосимметричной структуре молекулы, наличие электрического момента диполя – о несимметричности структуры молекулы (табл. 3.2).

Таблица 3.2

Строение и ожидаемая полярность молекул

Тип Пространственная конфигурация Ожидаемая полярность Примеры
Линœейная Неполярная ,,
Линœейная Полярная ,
Линœейная Неполярная ,,
Угловая Полярная ,,
Линœейная Полярная
Плоскотреугольная Неполярная ,
Тригонально-пирамидальная Полярная ,,
Тетраэдрическая Неполярная ,,

На значение электрического момента диполя молекулы сильно влияют несвязывающие электронные пары. К примеру, молекулы NH3 и NF3 имеют одинаковую тригонально-пирамидальную форму, полярность связей N–H и N–F также примерно одинакова. При этом электрический момент диполя NH3 равен 0,49·10-29 Кл·м, а NF3 всœего 0,07·10-29 Кл·м.

Это объясняется тем, что в NH3 направление электрического момента диполя связывающей N–H и несвязывающей электронной пары совпадает и при векторном сложении обусловливает большой электрический момент диполя.

Наоборот, в NF3 моменты связей N–F и электронной пары направлены в противоположные стороны, в связи с этим при сложении они частично компенсируются (рис. 3.15).

Рис 3.15. Сложение электрических моментов диполя связывающих и несвязывающих электронных пар молекул NH3 и NF3

Неполярную молекулу можно сделать полярной. Для этого её нужно поместить в электрическое поле с определœенной разностью потенциалов. Под действием электрического поля ʼʼцентры тяжестиʼʼ положительных и отрицательных зарядов смещаются и возникает индуцированный или наведенный электрический момент диполя. При снятии поля молекула опять станет неполярной.

Под действием внешнего электрического поля полярная молекула поляризуется, т. е.

в ней происходит перераспределœение зарядов, и молекула приобретает новое значение электрического момента диполя, становится ещё более полярной.

Это может происходить и под влиянием поля, создаваемого приблизившейся полярной молекулой. Способность молекул поляризоваться под действием внешнего электрического поля называют поляризуемостью.

Полярностью и поляризуемостью молекул обусловлено межмолекулярное взаимодействие. С электрическим моментом диполя молекулы связана реакционная способность вещества, его растворимость. Полярные молекулы жидкостей благоприятствуют электролитической диссоциации растворенных в них электролитов.

Источник: http://referatwork.ru/category/obrazovanie/view/209781_polyarnost_molekul_tipy_kovalentnyh_molekul

Полярная и неполярная связь. Свойства ковалентной связи — Науколандия

Если молекула образована одинаковыми атомами (O2, H2, Cl2), то между ними образуется неполярная ковалентная связь. В таком случае валентные электроны притягиваются атомами с равной силой, поэтому общее электронное облако расположено симметрично относительно обоих атомов. Электронная пара, образующая связь, в равной степени принадлежит обоим атомам.

Если ковалентную связь в молекуле образуют атомы разных элементов, то она будет полярной. В полярной ковалентной связи электронная пара смещена к атому с большей электроотрицательностью, то есть к тому, который сильнее притягивает электроны.

Поскольку электроотрицательность у каждого химического элемента своя, то смещение в полярных связях может быть разное. Чем больше разница между электроотрицательностями, тем больше будет полярность связи. В полярной связи электронное облако смещено к тому элементу, который притягивает к себе электроны.

Так в молекуле HF по сравнению с HI полярность связи больше, т. к. фтор более электроотрицательный элемент.

В молекулах с полярными ковалентными связями из-за того, что электронное облако смещено, молекула приобретает отрицательный и положительный заряд в разных своих точках. То есть молекула становится полярной — диполем. Так происходит в молекуле воды, где электроны водорода смещаются к атому кислорода, в результате у водородов больше положительный заряд, а у кислорода отрицательный.

Небольшой отрицательный заряд (δ-) у атома, к которому смещены электроны, равен положительному заряду (δ+) на атоме, от которого оттягиваются атомы. (Если рассматривать двухатомные молекулы).

Однако бывают молекулы с полярной связью, которые неполярны, т. е. не являются диполями. Так молекула углекислого газа CO2 неполярна. Хотя 4 внешних электрона углерода оттянуты по 2 к атомам кислорода, но из-за того, что углерод расположен в центре молекулы, она в целом неполярна.

Полярная ковалентная связь также характеризуется длинной связи (расстоянием между ядрами атомов). Ядра находятся друг от друга на таком расстоянии, на котором энергия молекулы минимальна. Это состояние достигается, когда электронные облака максимально перекрываются. Обычно чем больше размеры атомов, тем больше в них длина связи. Так в молекуле водорода (H2) длина связи самая маленькая.

Когда атом образует несколько полярных связей, то связи образуют определенный угол между собой — валентный угол (от 90° до 180°). Так в CO2 угол между связями равен 180°. Валентные углы определяют геометрическую форму молекулы.

Источник: https://scienceland.info/chemistry8/covalent-bond1

Дипольный момент молекулы и связи | Рефераты KM.RU

Министерство общего и профессионального образования РФ

Московский Государственный Технический Университет

им. Н.Э.Баумана

Доклад

Дипольный момент молекулы и связи

Выполнен студенткой гр. МТ10-42

Галямовой Ириной

Проверил Волков А.А.

г.Москва, 2001г.

Представим себе, что можно найти “центры тяжести” отрицательных и положительных частей молекулы. Тогда условно все вещества можно разбить на две группы. Одну группу составляют те, в молекулах которых оба  “центра тяжести” совпадают. Такие молекулы называются неполярными.

К ним относятся все ковалентные двухатомные молекулы вида А2, а также молекулы, состоящие из трех и более атомов, имеющие высокосимметричное строение, например СО2, СS2 , СCl4 , С6 H6.

Во вторую группу входят все вещества, у которых “центры тяжести” зарядов в молекуле не совпадают, молекулы которых характеризуются электрической асимметрией. Эти молекулы называют полярными.

К ним относятся молекулы вида АВ, в которых элементы А и В имеют различную электроотрицательность, и многие более сложные молекулы. Систему из двух разноименных электрических зарядов, равных по абсолютной величине, называют диполем.


Величина дипольного момента сильно влияет на свойства полярных молекул и веществ, построенных из таких молекул.

Полярные молекулы поляризуются в электрическом поле, устанавливаясь по силовым линиям поля, ориентируются в электических полях, создаваемых ионами в растворах, взаимодействуют между собой, замыкая свои электрические поля.

Дипольный момент образуется за счет смещения центров положительного и отрицательного зарядов на некоторую величину l, называемую длиной диполя.

Чем более полярны молекулы, чем значительнее смещены валентные электронные пары к одному из атомов, тем больше  m. И наоборот, если электрическая ассиметрия молекул незначительна, то величина m  невлика  ..

Для системы из двух частиц дипольный момент m  равен: m = el.

Где eвеличина заряда;l— расстояние между центрами. Однако, определяя сразу величину дипольного момента, мы не знаем ни величины заряда e, локализованного в полярной молекуле, ни расстояния между центрами l.

Принимаем e равным заряду электрона(1,6021*10-19Кл) и тогда получаем приведенную длину диполя l, которая  является условной величиной. В качестве единицы измерения дипольных моментов принят дебай(названный в честь голландского физика П.Дебая, разработавшего теорию полярных молекул).в системе СИ   1D=0,33*10-29Кл*м.

Дипольные моменты обычно определяют экспериментально, измеряя относительную диэлектрическую проницаемость e  веществ при различных температурах. Если вещество поместить в электрическое поле, создаваемое конденсатором, то емкость последнего возрастет в e  раз, т.е. e=c/c0 (где c0 и с- емкость конденсатора в вакууме и в среде вещества).

Энергия электрического поля в конденсаторе U выражается соотношением:

U=1/2cV2,

где V- напряжение на обкладках конденсатора.

Из приведенного уравнения видно, что конденсатор в среде вещества имеет больший запас энергии, чем в вакууме (с>1). Это обусловлено тем, что под действием электрического поля происходит поляризация среды — ориентация диполей и деформация молекул. Первый эффект зависит от температуры, второй — не зависит.

Температурную зависимость относительно диэлектической проницаемости вещества e  выражает уравнение Ланжевена-Дебая:

где М- относительная молекулярная масса вещества; r- плотность вещества, NA- постоянная Авогадро; k- постоянная Больцмана, равная R/ NA (R- универсальная газовая постоянная); a- деформационная поляризуемость молекул.

Измерив e   при двух температурах, с помощью уравнения Ланжевена-Дебая можно определить a и m. Есть и другие методы экспериментального определения  m. 

Значения дипольных моментов для некоторых связей между разнородными  атомами приведены в таблице:

Не следует путать дипольный момент связи и дипольный момент молекулы, так как в молекуле могут существовать несколько связей, дипольные моменты которых суммируются как векторы.

Кроме того, на величину дипольного момента молекулы могут влиять  магнитные поля  орбиталей, содержащих электронную пару,- «неподеленные» электроны.

Большое влияние на полярность молекулы оказывает ее симметрия.

Например, молекула метана CH4  обладает высокой степенью симметрии (центрированный тетраэдр), и поэтому векторная сумма дипольных моментов связей (m=0,4D) равна нулю:

mсв=0

Если заменить водородные атомы на атомы хлора и получить молекулу CCl4, у которой дипольный момент связи m=2,05D, те в пять раз больший, чем  для C-H, то результат останется прежним, так как молекула CCl4  обладает таким же строением.

рис.2. схема строения молекулы СО2

Связь С=О обладает дипольным моментом 2,7D, однако линейная молекула СО2

Является неполярной до тех пор, пока ее структура не исказится под действием других молекул(напр, Н2О).Структура линейной молекулы СО2, в которой атом углерода гибридизирован частично: 2s22p2       2s12p3      2q22p2 ,представлена на рис.2. Дипольные моменты связей, обладая различными знаками, дают общий депольный момент, равный нулю:

mсв=0.

Таким образом, полярность молекул определяется довольно сложно, так как она учитывает все взаимодействия, которые могут возникнуть в такой сложной структуре, как молекула.

Кроме того, ”полярность” молекулы не определяется лишь величиной дипольного момента, а зависит также от размеров и конфигурации молекул. Например, молекула воды более резко проявляет свои полярные свойства (образование гидратов, растворимость и т.д.

), чем молекула этилового спирта, хотя дипольные моменты у них почти одинаковые (mн2о=1,84D; mс2н5он=1,70D).

Значения дипольных моментов для некоторых полярных молекул:

m молекула m молекула m молекула m молекула m
Н2 HF 1,82 Н2О 1,84 CO2 CH4;CCl4
О2 HCl 1,07 Н2S 0,93 SO2 1,61 CH3Cl 1,86
N2 HBr 0,79 NН3 1,46 SO3 CH2Cl2 1,57
Cl2 HI 0,38 PН3 0,55 SF6 CHCl3 1,15

Дипольный момент полярной молекулы может изменять свою величину под действием внешних электрических полей, а также под действием электрических полей других полярных молекул, однако при удалении внешних воздействий дипольный момент принимает прежнюю величину.

Некоторые молекулы, неполярные в обычных условиях, могут получать  так называемый индуцированный или “наведенный” дипольный момент, тоже исчезающий при снятии поля.

Величина индуцированного момента в первом приближении пропорциональна напряженности электрического поля E: mинд=ae0E, гдеa — коэффициент поляризуемости, [a]=м3, e0-электрическая постоянная.

Физико-химические особенности полярных молекул  определяются их способностью реагировать на внешние электрические поля (электрическая поляризация) и на поля, созданные другими полярными молекулами. В частности, за счет взаимодействия с полярными молекулами воды  такие полярные молекулы, как HF, HCl и   др.,могут подвергаться электролитической диссоциации.

Дополнительно используемая литература:

1.Общая и неорганическая химия. Карапетьян, Дракин

2. Теоретические основы общей химии. Горбунов, Гуров, Филиппов

Дата добавления: 23.10.2001

Источник: http://www.km.ru/referats/0FE77448A1DD4358B05A9C3D2AA97431

Ссылка на основную публикацию
Adblock
detector