Что такое разность

Разность — это поделить или умножить?

Что такое разностьРазность — это отнять. Результат вычитания называется разность. Если названия чисел, которые принимают участие в процессе выполнения математических действий, записать в виде математических выражений, то у нас получатся очень наглядная запись:

уменьшаемое — вычитаемое = разность

При чтении это будет звучать так: «уменьшаемое минус вычитаемое равно разность». 

Сумма — это сложить. Результат сложения называется сумма. Числа, которые складываются в кучку, называются слагаемыми.

слагаемое + слагаемое = сумма

«Слагаемое плюс слагаемое равно сумма». Чтобы хоть как-то отличать одно слагаемое от другого, им присваивают порядковые номера: первое слагаемое, второе слагаемое и так далее по количеству слагаемых в сумме.

Произведение — это умножить. Результат умножения называется произведение.

сомножитель х сомножитель = произведение

«Сомножитель умножить на сомножитель равно произведение». Как и при сложении, при умножении сомножители различаются порядковыми номерами: первый сомножитель, второй сомножитель и так далее (если сомножителей много).

Частное — это деление. Результат деления называется частное.

делимое : делитель = частное

«Делимое разделить на делитель равно частое». Если деление записывается в виде дроби с использованием дробной черты, тогда делимое называют числителем, делитель называют знаменателем.

числитель / знаменатель = частное

«Числитель разделить на знаменатель равно частное».

Найти решение:

При разности делим или умножаем — при разности мы не делим по братски и не умножаем нажитое непосильным трудом — мы самым наглым образом отнимаем! Помните, как говорили пираты барону Мюнхгаузену в мультфильме? «Эй, там, на острове! Отдавай свой сундук» — это и есть пример отнимания, которое в математике называется вычитанием.

Какое действие представляет разность — на Всемирном Конгрессе Математических Действий, состоявшемся не понятно где в неизвестном году, разность вручила свои верительные грамоты от имени вычитания. Вот с тех незапамятных времен разность представляет результат математического действия «вычитание» или по-простому «отнять».

Источник: http://www.webstaratel.ru/2010/03/blog-post_17.html

Что такое сумма, разность, произведение, частное в математике?

I. Математические понятия СУММА, РАЗНОСТЬ, ПРОИЗВЕДЕНИЕ, ЧАСТНОЕ взаимосвязаны с математическими терминами СЛОЖЕНИЕ, ВЫЧИТАНИЕ, УМНОЖЕНИЕ, ДЕЛЕНИЕ.

Все определения даются здесь на множестве натуральных чисел.

Каждой паре чисел ставится в соответствие число, называемое их СУММОЙ.

Сумма состоит из стольких единиц, сколько их содержится в числах (слагаемых) из данной пары.

СУММА есть результат сложения чисел-слагаемых.

Вычитание — это операция, обратная сложению. Она состоит в нахождении одного из слагаемых по сумме и другому слагаемому. Данная сумма называется уменьшаемым, данное слагаемое — вычитаемым, а искомое слагаемое — РАЗНОСТЬЮ.

РАЗНОСТЬ — это число, являющееся результатом вычитания, остаток вычитания.

Каждой паре чисел можно поставить в соответствие число, которое состоит из стольких единиц, сколько их содержится в первом числе из пары, взятых столько раз, сколько единиц содержится во втором числе из пары. Это соответствующее таким образом паре чисел (они называются сомножителями) число называется ПРОИЗВЕДЕНИЕМ.

ПРОИЗВЕДЕНИЕ — это результат умножения.

Деление есть операция, обратная умножению.

Деление — это нахождение одного из сомножителей по произведению и другому сомножителю. Данное произведение называется делимым, данный сомножитель — делителем, а искомый сомножитель — это ЧАСТНОЕ, то есть число, полученное от деления одного числа на другое.

II. ДРУГИЕ ЗНАЧЕНИЯ СЛОВ СУММА, РАЗНОСТЬ, ПРОИЗВЕДЕНИЕ, ЧАСТНОЕ.

Все используемые в качестве математических понятий слова могут иметь и другие лексические значения.

СУММА в переносном значении означает совокупность, общее количество чего-либо.

Например. Профессионализм педагога заключается в сумме знаний, умений и навыков, передаваемых им своим ученикам. Отсутствие нужной суммы денег заставило отказаться от покупки.

РАЗНОСТЬ имеет значения разницы, несходства, отличия в чем-либо.

Например. Разность интересов намного хуже разницы в возрасте. Дружба может начаться с представления об общности взглядов , а вражда — с разности взглядов.

ПРОИЗВЕДЕНИЕ означает что-либо произведенное в процессе труда, создание чего-нибудь, продукт труда, творчества, искусства и т.п.

Например. Высокое художественное произведение заставляет человека думать над своей жизнью. На конкурсе юных пианистов мальчик играл произведение П.И. Чайковского. Эта шкатулка — настоящее произведение искусства.

ЧАСТНОЕ — это что-то личное, персональное, принадлежащее только одному человеку, это его собственность, его и только его достояние. И будь то самоличные мысли, будь то имущество или что-нибудь другое, но оно принадлежит только ему, частному лицу.

Например. Подруга подарила мне записную книжку с надписью «Частное». Хорошо ли противопоставлять частное общественному?

Источник: http://www.bolshoyvopros.ru/questions/1171477-chto-takoe-summa-raznost-proizvedenie-chastnoe-v-matematike.html

Что такое разность и частное

Что такое разность и частное

Разность и частное относятся к математическим понятиям. Так же, есть такие понятия, как сумма и произведение. Все эти понятия взаимосвязаны с математическими терминами:

  1. Сложение;
  2. Вычитание;
  3. Умножение;
  4. Деление.

Определим понятие разности 

Разность – это результат действия вычитания.  Разность состоит уменьшаемого, вычитаемого и разности.

Рассмотрим на примере:  9 – 3 = 6, где 9 – уменьшаемое, 3 – вычитаемое, 6 – разность.   Для того, чтобы сделать проверку разности, нужно найти сумму вычитаемого и разности.

Рассмотрим примеры разностей:

  • 5 – 3 = 2;
  • 15 – 8 = 7;
  • 36 – 12 = 24;
  • 45 – 12 = 33;
  • 65 – 25 = 40.

Определим понятие частного

Частное – это результат действия деления.  Частное состоит из делимого, делителя и частного. 

Рассмотрим на примере: 15/5 = 3, где 15 – делимое, 5 – делитель, 3 – частное.  Для того, чтобы сделать проверку, нужно найти произведение делителя и частного.

Рассмотрим примеры частных:

  • 8/2 = 4;
  • 75/15 = 5;
  • 100/5 = 20;
  • 50/25 = 2;
  • 3/6 = 0.5.

Свойства суммы, разности, произведения и частного: 

  1. Сумма двух положительных чисел равна положительному числу. Например, 5 + 3 = 8;
  2. Произведение двух положительных чисел дает положительное число. Например, 6 * 8 =  48;
  3. Частное двух положительных чисел будет положительным числом. Например, 72/8 = 9;
  4. Сумма двух отрицательных чисел равна отрицательному числу. Например, — 6 – 5 = — 11;
  5. Произведение двух отрицательных чисел равна положительному числу. Например, — 9 * (- 3) = 27;
  6. Частное двух отрицательных чисел равна положительному числу. Например, — 36/(- 2) = 18;
  7. Произведение двух отрицательных чисел равна отрицательному числу. Например, — 8 * 5 = — 40;
  8. Частное двух отрицательных чисел равна отрицательному числу. Например, — 81/9 = — 9.

Источник: http://VashUrok.ru/questions/chto-takoe-raznost-i-chastnoe

Что такое разность чисел в математике?

Для многих точные науки, вроде математики, воспринимаются как нечто более простое, чем сферы, требующие рассуждений, предполагающие большую вариативность. Однако все предметы имеют свои сложности, в том числе и технические.

Читайте также:  Как сохранить в вазе розы

Вычитание

Для того, чтобы понять, чем является разность, необходимо разобраться в ряде математической терминологии. В первую очередь, нужно выяснить, чем является вычитание.

По-другому это понятие называют убавлением, и по такому названию понять смысл процесса несколько проще. По своей сути вычитание является одной из математических операций. Что же это за операции? Как правило, под ними понимают определенные арифметические или логические действия. Встает логичный вопрос – в чем же суть арифметических действий?

Понятие арифметики появилось достаточно давно. Оно зародилось в древнегреческом языке, где переводилось как «число». Сегодня это раздел математики, который изучает числа, их отношения друг к другу, а также свойства.

Итак, вычитание – это операции с числами, относящиеся к бинарным. Суть бинарных операций в том, что в них используются два аргумента (параметра), и получается один результат.

Как правило, у учеников возникает гораздо больше проблем именно с вычитанием, нежели со сложением. Отчасти это связано со свойствами данных математических операций.

Всем известно, что от перемены мест слагаемых значение суммы не меняется. В вычитании же всё гораздо сложней. Если поменять числа местами, получится совершенно другой результат.

Схожим свойством в прибавлении и убавлении является то, что нулевой элемент не меняет исходное число.

В вычитании всё относительно просто, если первое число больше второго, однако в школе будут рассматриваться и противоположные примеры. В этом случае возникает понятие отрицательного числа.

Например, если нужно вычесть из 5 число 2, то всё несложно. 5-2=3, таким образом разность числа составит 3. Однако, что делать, если необходимо посчитать, сколько будет два минус пять?

В выражении 2-5 разность уйдет в минус, то есть в отрицательное значение. Из двойки легко можно вычесть двойку, получив таким образом ноль, однако от пятерки остается ещё три. Таким образом, результатом данного выражения будет отрицательное число три. То есть, 2-5=-3.

Особенности вычитания отрицательных чисел

Также бывают ситуации, когда второе число, по сути, меньше первого, однако является отрицательным. Например, рассмотрим выражение 7-(-4). Проще всего разобраться с этой операцией путем превращения комбинации –(- в обычный плюс. Знаки даже внешне напоминают его. В связи с этим, результатом выражения, то есть разницей чисел, будет 11.

Если оба числа являются отрицательными, то вычитание будет происходить следующим образом.

-6-(-7): минус у первого числа сохранится, а комбинация из двух последующих минусов превратится в плюс. Таким образом, необходимо понять, сколько будет -6+7. Разницу найти нетрудно – она равняется единице.

Если же необходимо вычесть положительное число из отрицательного, то выражение можно представить как простое сложение, а затем подписать к результату минус. Например, -3-4 (4 – положительное число), в результате даст -7.

Источник: http://TopKin.ru/voprosy/nauka-voprosy/chto-takoe-raznost-chisel-v-matematike/

Что такое разность чисел в математике и как найти разность чисел

Что такое разность чисел в математике и как найти разность чисел

В этой статье мы рассмотрим, что такое разность чисел в математике, и как человеку, интересующемуся этой наукой, найти разность чисел.

Что такое разность чисел в математике

Вычитание является одной из 4 арифметических операций. Для его обозначения служит математический знак «−» (минус). Вычитание противоположно по смыслу операции сложения.

Операция вычитания в общем случае записывается следующим образом:

A − B = C

ЧислоМатематическое название
A Уменьшаемое
B Вычитаемое
C Разность чисел

Пример: 6 − 2 =4

Здесь разностью чисел будет являться число 4. Следовательно, разность между любыми числами A и B это такое число C, которое при прибавлении к B даст в сумме A (4 при прибавлении к 2 дает 6 — значит, 4 это разность 6 и 2).

Как найти разность чисел

Уже из самого определения следует, как вычислить разность между двумя числами. При небольших числах можно делать это в уме. Детей в начальной школе учат следующим образом. Представьте, что у Вас есть 5 яблок, и 3 из них забрали. Сколько у Вас осталось? Правильно — 2 яблока. Постепенно Вы доведете вычисления до автоматизма и будете сразу выдавать ответ.

Однако для чисел выше 50 такое наглядное представление перестает работать. Большое количество предметов тяжело представить в уме, поэтому здесь на помощь приходит другой способ:

Вычисление разности в столбик

Школьники изучают этот способ в рамках курса математики, обычно во втором или третьем классе. Взрослые люди, пользующиеся калькулятором, зачастую забывают, как считать в столбик. Однако калькулятор не всегда бывает под рукой. Освежите в памяти школьные знания, посмотрев это видео.

Вычисление разности в столбик – видео

Этот способ применим и тогда, когда Вам нужно вычесть большее число из меньшего. В реальной жизни такое обычно не требуется, но может пригодиться при решении математических задач.

Допустим, в примере «A − B = C» B больше, чем A. Тогда C будет отрицательным. Чтобы вычислить разность, «разверните» пример: посчитайте значение B − A.

Когда Вы закончите считать эту разность, у вас получится число C, только с противоположным знаком: оно будет больше нуля. Чтобы завершить вычисления, припишите к нему спереди знак минус.

Полученный результат — отрицательное число C, и будет искомым значением разности A − B.

Источник: http://www.chto-kak-skolko.ru/index.php/nauki/matematika/chto-takoe-raznost-chisel-v-matematike-i-kak-najti-raznost-chisel

разность — это… Что такое разность?

  • РАЗНОСТЬ — РАЗНОСТЬ, разности, жен. 1. Число, составляющее остаток в вычитании (мат.). Уменьшаемое равно вычитаемому плюс разность. 2. только ед. отвлеч. сущ. к разный в 1 знач.; различие несходство (книжн.). Разность взглядов. Разность характеров. ❖ Разные …   Толковый словарь Ушакова
  • разность — См. разница… Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. разность избыток, разница; отличие, различие, разрыв, несходство; разнокалиберность, перепад, сальдо, марджин, натяг,… …   Словарь синонимов
  • РАЗНОСТЬ — (difference) Изменение значения какой либо переменной между фиксированными моментами времени. Если xt – значение переменной х во время t, то первая разность определяется как Δxt=xt–xt–1. Вторая разность равна первой разнице Δxt, минус первая… …   Экономический словарь
  • РАЗНОСТЬ — (1) потенциалов (напряжение (см. (2))) количественная характеристика электрического поля неподвижных электрических зарядов () между двумя его точками, равная работе электрического поля по перемещению единичного положительного заряда из одной… …   Большая политехническая энциклопедия
  • РАЗНОСТЬ — РАЗНОСТЬ, разнота и пр. см. разный. Толковый словарь Даля. В.И. Даль. 1863 1866 …   Толковый словарь Даля
  • РАЗНОСТЬ — результат вычитания …   Большой Энциклопедический словарь
  • РАЗНОСТЬ — РАЗНОСТЬ, и, жен. 1. см. разный. 2. Результат, итог вычитания. | прил. разностный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова
  • разность — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN differential …   Справочник технического переводчика
  • Разность — Разность  многозначный термин: результат вычитания. Разность (минералогия) (например, «среднезернистые разности» или «мелоподобные разности») Разность потенциалов …   Википедия
  • разность — и; ж. 1. к Разный (1 зн.); различие. Р. убеждений, взглядов. Обнаружить р. в подходах к историческим фактам. // Различие между двумя сравниваемыми величинами в числовом выражении. Р. высот над уровнем моря. Р. температур. Р. уровней воды. Р. в… …   Энциклопедический словарь
Читайте также:  На каких сайтах можно разместить бесплатную рекламу своего сайта

Источник: https://ideographic.academic.ru/561/%D1%80%D0%B0%D0%B7%D0%BD%D0%BE%D1%81%D1%82%D1%8C

Что такое разность

Что такое разность

Разность  чисел  и  — это результат вычитания числа  из числа  .

Вычита́ние — одно из четырех арифметических действий; операция, обратная сложению. Обозначается знаком минус «−».

В выражении x − y (читается «икс минус игрек» ) элемент x называется уменьшаемым, элемент y называется вычитаемым, а результат вычитания называется разностью x и y.

В области положительных чисел вычитание не всегда выполнимо (из меньшего числа нельзя вычесть большее) . Это обстоятельство является формальным поводом для введения в арифметику нуля и отрицательных чисел; в расширенной таким образом числовой области вычитание всегда однозначно выполнимо.

  • РАЗНОСТЬ — РАЗНОСТЬ, разности, жен. 1. Число, составляющее остаток в вычитании (мат.). Уменьшаемое равно вычитаемому плюс разность. 2. только ед. отвлеч. сущ. к разный в 1 знач.; различие несходство (книжн.). Разность взглядов. Разность характеров. ❖ Разные …   Толковый словарь Ушакова
  • разность — Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. разность избыток, разница; отличие, различие, разрыв, несходство; разнокалиберность, перепад, сальдо, марджин, натяг,… …   Словарь синонимов
  • РАЗНОСТЬ — Изменение значения какой либо переменной между фиксированными моментами времени. Если xt – значение переменной х во время t, то первая разность определяется как Δxt=xt–xt–1. Вторая разность равна первой разнице Δxt, минус первая… …   Экономический словарь
  • РАЗНОСТЬ — потенциалов (напряжение (см. (2))) количественная характеристика электрического поля неподвижных электрических зарядов () между двумя его точками, равная работе электрического поля по перемещению единичного положительного заряда из одной… …   Большая политехническая энциклопедия
  • РАЗНОСТЬ — РАЗНОСТЬ, разнота и пр. см. разный. Толковый словарь Даля. В.И. Даль. 1863 1866 …   Толковый словарь Даля
  • РАЗНОСТЬ — результат вычитания …   Большой Энциклопедический словарь
  • РАЗНОСТЬ — РАЗНОСТЬ, и, жен. 1. см. разный. 2. Результат, итог вычитания. | прил. разностный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова
  • разность — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN differential …   Справочник технического переводчика
  • Разность — Разность  многозначный термин: результат вычитания. Разность (минералогия) (например, «среднезернистые разности» или «мелоподобные разности») Разность потенциалов …   Википедия
  • разность — и; ж. 1. к Разный (1 зн.); различие. Р. убеждений, взглядов. Обнаружить р. в подходах к историческим фактам. // Различие между двумя сравниваемыми величинами в числовом выражении. Р. высот над уровнем моря. Р. температур. Р. уровней воды. Р. в… …   Энциклопедический словарь
  • разность — ▲ величина ↑ различие разность величина различия; результат вычитания; количественное различие. разница. перепад (# давлений). приращение. ▼ ни на сколько, угол ↓ вычита …   Идеографический словарь русского языка

Источник: https://otvetinavoprosi.xyz/nauka/chto-takoe-raznost/

разность — это… Что такое разность?

common difference, difference матем., differential, remainder, residual

* * *

ра́зность ж.
difference

ра́зность долго́т ме́ста и географи́ческого ме́ста — the difference in longitude between the observer and the geographical position of the observer

найти́ ра́зность чи́сел A и B — take the difference of A and B

ра́зность напряже́ния се́ти и потреби́теля — the difference in voltage between the mains and load

ра́зность арифмети́ческой прогре́ссии — common difference

ра́зность взгля́дов геод. — difference in length of sight

втора́я ра́зность мат. — second (order) difference

ра́зность глуби́н модуля́ции [РГМ] ав. — difference in depth modulation, DDM

ра́зность давле́ний — pressure difference

ра́зность для интерполи́рования вперё́д мат. — forward difference

ра́зность для интерполи́рования наза́д мат. — backward difference

ра́зность долго́т навиг. — difference of longitude, D. Long.

коне́чная ра́зность мат. — finite difference

ле́вая ра́зность мат. — backward difference

ра́зность магни́тных потенциа́лов — magnetic potential difference

ра́зность меридиа́нных часте́й — meridional difference of latitude

ра́зность населё́нностей полупр. — population difference

обра́тная ра́зность мат. — reciprocal difference

ра́зность паралла́ксов — parallax difference

пе́рвая ра́зность мат. — first difference

ра́зность потенциа́лов — potential difference

ра́зность потенциа́лов на сопротивле́нии, в це́пи и т. п. — a potential difference across a resistor, circuit, etc.

проходи́ть ра́зность потенциа́лов () [m2]… — fall through a potential difference of …

пра́вая ра́зность мат. — forward difference

психрометри́ческая ра́зность — wet-bulb depression, psychrometric difference

разделё́нная ра́зность мат. — divided difference, difference quotient

ра́зность фаз — difference in phase, phase difference

ра́зность хо́да луча́ () физ., радио — path-length difference

ра́зность широ́т навиг. — difference of lattitude, D. Lat.

* * *

difference

Русско-английский политехнический словарь. Академик.ру. 2011.

Источник: http://polytechnic_ru_en.enacademic.com/48693/%D1%80%D0%B0%D0%B7%D0%BD%D0%BE%D1%81%D1%82%D1%8C

Как найти разность чисел в математике

Как найти разность чисел в математике

Слово «разность» может употребляться во многих значениях. Это может означать и разницу чего-либо, например, мнений, взглядов, интересов. В некоторых научных, медицинских и других профессиональных сферах этим термином обозначают разные показатели, к примеру, уровня сахара в крови, атмосферного давления, погодных условий. Понятие «разность», как математический термин тоже существует.

Арифметические действия с числами

Основными арифметическими действиями в математике являются:

  • сложение;
  • вычитание;
  • умножение;
  • деление.

Каждый результат этих действий также имеет своё название:

  • сумма — результат, получившийся при сложении чисел;
  • разность — результат, получившийся при вычитании чисел;
  • произведение — результат умножения чисел;
  • частное — результат деления.
Читайте также:  Как отправить дешево посылку

Более простым языком объясняя понятия суммы, разности, произведения и частного в математике, можно упрощённо записать их лишь как словосочетания:

  • сумма — прибавить;
  • разность — отнять;
  • произведение — умножить;
  • частное — разделить.

Разность в математике

Рассматривая определения, что же такое разность чисел в математике, можно обозначить это понятие несколькими способами:

  • Разность чисел означает, насколько одно из них больше другого.
  • Разностью в математике называется итог, получившийся при отнимании друг от друга двух и более чисел.
  • Это вычитание одного числа из другого.
  • Это цифра, составляющая остаток при минусовании двух величин.
  • Это величина, являющаяся результатом вычитания двух значений.
  • Разность показывает количественное различие между двумя цифрами.
  • Это результат одного из четырёх арифметических действий, которым является вычитание.
  • Это то, что получится, если из уменьшаемого отнять вычитаемое.

И все эти определения являются верными.

Как найти разницу величин

Возьмём за основу то обозначение разности, которое нам предлагает школьная программа:

  • Разностью называется результат вычитания одного числа из другого. Первое из этих чисел, из которого осуществляется вычитание, называется уменьшаемым, а второе, которое вычитают из первого, называется вычитаемым.

Ещё раз прибегнув к школьной программе, мы находим правило, как найти разность:

  • Чтобы найти разность, надо от уменьшаемого отнять вычитаемое.

Всё понятно. Но при этом мы получили ещё несколько математических терминов. Что они значат?

  • Уменьшаемое — это математическое число, от которого отнимают и оно уменьшается (становится меньше).
  • Вычитаемое — это математическое число, которое вычитают из уменьшаемого.

Теперь понятно, что разность состоит из двух чисел, которые для её вычисления должны быть известны. А как их найти тоже воспользуемся определениями:

  • Чтобы найти уменьшаемое, надо к вычитаемому прибавить разность.
  • Чтобы найти вычитаемое, нужно из уменьшаемого вычесть разность.

Математические действия с разностью чисел

Опираясь на выведенные правила, можно рассмотреть наглядные примеры. Математика, интереснейшая наука. Мы здесь возьмём для решения лишь самые простые цифры. Научившись вычитать их, вы научитесь решать и более сложные значения, трёхзначные, четырёхзначные, целые, дробные, в степенях, корнях, другие.

Простые примеры

  • Пример 1. Найти разницу двух величин.

Дано:

20 — уменьшаемое значение,

15 — вычитаемое.

Решение: 20 — 15 = 5

Ответ: 5 — разница величин.

  • Пример 2. Найти уменьшаемое.

Дано:

48 — разность,

32 — вычитаемое значение.

Решение: 32 + 48 = 80

Ответ: 80.

  • Пример 3. Найти вычитаемое значение.

Дано:

7 — разность,

17 — уменьшаемая величина.

Решение: 17 — 7 = 10

Ответ: вычитаемое значение 10.

Более сложные примеры

На примерах 1—3 рассмотрены действия с простыми целыми числами. Но в математике разницу вычисляют с применением не только двух, но и нескольких чисел, а также целых, дробных, рациональных, иррациональных, др.

  • Пример 4. Найти разницу трёх значений.

Даны целые значения: 56, 12, 4.

56 — уменьшаемое значение,

12 и 4 — вычитаемые значения.

Решение можно выполнить двумя способами.

1 способ (последовательное отнимание вычитаемых значений):

1) 56 — 12 = 44 (здесь 44 — получившаяся разница двух первых величин, которая во втором действии будет уменьшаемым);

2) 44 — 4 = 40.

2 способ (отнимание из уменьшаемого суммы двух вычитаемых, которые в таком случае называются слагаемыми):

1) 12 + 4 = 16 (где 16 — сумма двух слагаемых, которая в следующем действии будет вычитаемым);

2) 56 — 16 = 40.

Ответ: 40 — разница трёх значений.

  • Пример 5. Найти разницу рациональных дробных чисел.

Даны дроби с одинаковыми знаменателями, где

4/5 — уменьшаемая дробь,

3/5 — вычитаемая.

Чтобы выполнить решение, нужно повторить действия с дробями. То есть, надо знать как отнимать дроби с одинаковым знаменателем. Как обращаться с дробями, имеющими разные знаменатели. Их надо уметь привести к общему знаменателю.

Решение: 4/5 — 3/5 = (4 — 3)/5 = 1/5

Ответ: 1/5.

  • Пример 6. Утроить разницу чисел.

А как выполнить такой пример, когда требуется удвоить или утроить разницу?

Вновь прибегнем к правилам:

  • Удвоенное число — это величина, умноженная на два.
  • Утроенное число — это величина, умноженная на три.
  • Удвоенная разность — это разница величин, умноженная на два.
  • Утроенная разность — это разница величин, умноженная на три.

Дано:

7 — уменьшаемая величина,

5 — вычитаемая величина.

Решение:

1) 7 — 5 = 2;

2) 2 * 3 = 6. Ответ: 6 — разница чисел 7 и 5.

  • Пример 7. Найти разницу величин 7 и 18.

Дано:

7 — уменьшаемая величина;

18 — вычитаемая.

Вроде всё понятно. Стоп! Вычитаемое больше уменьшаемого?

И опять есть применяемое для конкретного случая правило:

  • Если вычитаемое больше уменьшаемого, разница окажется отрицательной.

Решение:

7 — 18 = — 11

Ответ: — 11. Это отрицательное значение и есть разница двух величин, при условии, что вычитаемая величина больше уменьшаемой.

Математика для блондинок

Во Всемирной паутине можно найти массу тематических сайтов, которые ответят на любой вопрос. Точно так же в любых математических расчётах вам помогут онлайн-калькуляторы на любой вкус.

Все расчёты, производимые на них, прекрасное подспорье для торопливых, нелюбознательных, ленивых. Математика для блондинок — один из таких ресурсов.

Причём прибегаем к нему мы все, независимо от цвета волос, пола и возраста.

В школе подобные действия с математическими величинами нас учили вычислять в столбик, а позднее — на калькуляторе. Калькулятор — это также удобное подспорье.

Но, для развития мышления, интеллекта, кругозора и других жизненных качеств, советуем производить арифметические действия на бумаге или даже в уме. Красота человеческого тела — это великое достижение современного фитнес-плана.

Но мозг — это тоже мышца, которая требует иногда её качать. А значит, не откладывая, начинайте думать.

И пусть в начале пути вычисления сводятся к примитивным примерам, всё у вас впереди. А освоить придётся немало. Мы видим, что действий с разными величинами в математике множество. Поэтому кроме разницы необходимо изучить, как вычислить и остальные результаты арифметических действий:

  • сумму — сложением слагаемых;
  • произведение — умножением множителей;
  • частное — делением делимого на делитель.

Вот такая интересная арифметика.

Источник: https://obrazovanie.guru/nauka/matematika/kak-najti-raznost-chisel.html

Ссылка на основную публикацию
Adblock
detector