Как вычислять дроби

Сложение и вычитание дробей

30 июля 2011

Дроби — это обычные числа, их тоже можно складывать и вычитать. Но из-за того, что в них присутствует знаменатель, здесь требуются более сложные правила, нежели для целых чисел.

Рассмотрим самый простой случай, когда есть две дроби с одинаковыми знаменателями. Тогда:

Внутри каждого выражения знаменатели дробей равны. По определению сложения и вычитания дробей получаем:

Как видите, ничего сложного: просто складываем или вычитаем числители — и все.

Но даже в таких простых действиях люди умудряются допускать ошибки. Чаще всего забывают, что знаменатель не меняется. Например, при сложении их тоже начинают складывать, а это в корне неправильно.

Избавиться от вредной привычки складывать знаменатели достаточно просто. Попробуйте сделать то же самое при вычитании. В результате в знаменателе получится ноль, и дробь (внезапно!) потеряет смысл.

Поэтому запомните раз и навсегда: при сложении и вычитании знаменатель не меняется!

Также многие допускают ошибки при сложении нескольких отрицательных дробей. Возникает путаница со знаками: где ставить минус, а где — плюс.

Эта проблема тоже решается очень просто. Достаточно вспомнить, что минус перед знаком дроби всегда можно перенести в числитель — и наоборот. Ну и конечно, не забывайте два простых правила:

  1. Плюс на минус дает минус;
  2. Минус на минус дает плюс.

Разберем все это на конкретных примерах:

В первом случае все просто, а во втором внесем минусы в числители дробей:

Что делать, если знаменатели разные

Напрямую складывать дроби с разными знаменателями нельзя. По крайней мере, мне такой способ неизвестен. Однако исходные дроби всегда можно переписать так, чтобы знаменатели стали одинаковыми.

Существует много способов преобразования дробей. Три из них рассмотрены в уроке «Приведение дробей к общему знаменателю», поэтому здесь мы не будем на них останавливаться. Лучше посмотрим на примеры:

В первом случае приведем дроби к общему знаменателю методом «крест-накрест». Во втором будем искать НОК. Заметим, что 6 = 2 · 3; 9 = 3 · 3. Последние множители в этих разложениях равны, а первые взаимно просты. Следовательно, НОК(6; 9) = 2 · 3 · 3 = 18.

Что делать, если у дроби есть целая часть

Могу вас обрадовать: разные знаменатели у дробей — это еще не самое большое зло. Гораздо больше ошибок возникает тогда, когда в дробях-слагаемых выделена целая часть.

Безусловно, для таких дробей существуют собственные алгоритмы сложения и вычитания, но они довольно сложны и требуют долгого изучения. Лучше используйте простую схему, приведенную ниже:

  1. Перевести все дроби, содержащие целую часть, в неправильные. Получим нормальные слагаемые (пусть даже с разными знаменателями), которые считаются по правилам, рассмотренным выше;
  2. Собственно, вычислить сумму или разность полученных дробей. В результате мы практически найдем ответ;
  3. Если это все, что требовалось в задаче, выполняем обратное преобразование, т.е. избавляемся от неправильной дроби, выделяя в ней целую часть.

Правила перехода к неправильным дробям и выделения целой части подробно описаны в уроке «Что такое числовая дробь». Если не помните — обязательно повторите. Примеры:

Здесь все просто. Знаменатели внутри каждого выражения равны, поэтому остается перевести все дроби в неправильные и сосчитать. Имеем:

Чтобы упростить выкладки, я пропустил некоторые очевидные шаги в последних примерах.

Небольшое замечание к двум последним примерам, где вычитаются дроби с выделенной целой частью. Минус перед второй дробью означает, что вычитается именно вся дробь, а не только ее целая часть.

Перечитайте это предложение еще раз, взгляните на примеры — и задумайтесь. Именно здесь начинающие допускают огромное количество ошибок. Такие задачи обожают давать на контрольных работах. Вы также неоднократно встретитесь с ними в тестах к этому уроку, которые будут опубликованы в ближайшее время.

Резюме: общая схема вычислений

В заключение приведу общий алгоритм, который поможет найти сумму или разность двух и более дробей:

  1. Если в одной или нескольких дробях выделена целая часть, переведите эти дроби в неправильные;
  2. Приведите все дроби к общему знаменателю любым удобным для вас способом (если, конечно, этого не сделали составители задач);
  3. Сложите или вычтите полученные числа по правилам сложения и вычитания дробей с одинаковыми знаменателями;
  4. Если возможно, сократите полученный результат. Если дробь оказалась неправильной, выделите целую часть.

Помните, что выделять целую часть лучше в самом конце задачи, непосредственно перед записью ответа.

Источник: https://www.berdov.com/docs/fraction/addition_subtraction/

Калькулятор дробей

Калькулятор дробей предназначен для быстрого расчета операций с дробями, поможет легко дроби сложить, умножить, поделить или вычесть.

Современные школьники начинают изучение дробей уже в 5 классе, с каждым годом упражнения с ними усложняются. Математические термины и величины, которые мы узнаем в школе, редко могут пригодиться нам во взрослой жизни.

Однако дроби, в отличие от логарифмов и степеней, встречаются в повседневности достаточно часто (измерение расстояния, взвешивание товара и т.д.). Наш калькулятор предназначен для быстрого проведения операций с дробями.

Для начала определим, что такое дроби и какие они бывают. Дробями называют отношение одного числа к другому, это число, состоящее из целого количества долей единицы.

Разновидности дробей:

  • Обыкновенные
  • Десятичные
  • Смешанные

Пример обыкновенных дробей:

Верхнее значение является числителем, нижнее знаменателем. Черточка показывает нам, что верхнее число делится на нижнее. Вместо подобного формата написания, когда черточка находится горизонтально, можно писать по-другому. Можно ставить наклонную линию, например:

1/2, 3/7, 19/5, 32/8, 10/100, 4/1

Десятичные дроби являются самой популярной разновидностью дробей. Они состоят из целой части и дробной, отделенные запятой.

Пример десятичных дробей:

0,2, или 6,71 или 0,125

Смешанные дроби состоят из целого числа и дробной части. Чтобы узнать значение этой дроби, нужно сложить целое число и дробь.

Пример смешанных дробей:

Калькулятор дробей на нашем сайте способен быстро в онлайн-режиме выполнить любые математические операции с дробями:

  • Сложение
  • Вычитание
  • Умножение
  • Деление

Для осуществления расчета нужно ввести цифры в поля и выбрать действие. У дробей нужно заполнить числитель и знаменатель, целое число может не писаться (если дробь обыкновенная). Не забудьте нажать на кнопку «равно».

Удобно, что калькулятор сразу предоставляет процесс решения примера с дробями, а не только готовый ответ. Именно благодаря развернутому решению вы можете использовать данный материал при решении школьных задач и для лучшего освоения пройденного материала.

Пример:

Вам нужно осуществить расчет примера:

После введения показателей в поля формы получаем:

Чтобы сделать самостоятельный расчет, введите данные в форму.

Введите две дроби:

Сопутствующие разделы:
Математический калькулятор онлайн

Источник: https://CalcSoft.ru/kalkulator-drobey

Как решать дроби. Решение дробей

В статье покажем, как решать дроби на простых понятных примерах. Разберемся, что такое дробь и рассмотрим решение дробей!

Понятие дроби вводится в курс математики начиная с 6 класса средней школы.

Дроби имеют вид : ±X/Y, где Y — знаменатель, он сообщает на сколько частей разделили целое, а X — числитель, он сообщает, сколько таких частей взяли. Для наглядности возьмем пример с тортом:

В первом случае торт разрезали поровну и взяли одну половину, т.е. 1/2. Во втором случае торт разрезали на 7 частей, из которых взяли 4 части, т.е. 4/7.

Если часть от деления одного числа на другое не является целым числом, ее записывают в виде дроби.

Например, выражение 4:2 = 2 дает целое число, а вот 4:7 нацело не делится, поэтому такое выражение записывается в виде дроби 4/7.

Иными словами дробь — это выражение, которое обозначает деление двух чисел или выражений, и которое записывается с помощью дробной черты.

Если числитель меньше знаменателя — дробь является правильной, если наоборот — неправильной. В состав дроби может входить целое число.

Например, 5 целых 3/4.

Данная запись означает, что для того, чтобы получить целую 6 не хватает одной части от четырех.

Если вы хотите запомнить, как решать дроби за 6 класс, вам надо понять, что решение дробей, в основном, сводится к понимаю нескольких простых вещей.

  • Дробь по сути это выражение доли. То есть числовое выражение того, какую часть составляет данное значение от одного целого. К примеру дробь 3/5 выражает, что, если мы поделили что то целое на 5 частей и количество долей или частей это этого целого — три.
  • Дробь может быть меньше 1, например 1/2(или по сути половина), тогда она правильная. Если дробь больше 1, к примеру 3/2(три половины или один с половиной), то она неправильная и для упрощения решения, нам лучше выделить целую часть 3/2= 1 целая 1/2.
  • Дроби это такие же числа, как 1, 3, 10, и даже 100, только числа это не целые а дробные. С ними можно выполнять все те же операции, что с числами. Считать дроби не сложнее, и далее на конкретных примерах мы это покажем.

Как решать дроби. Примеры

К дробям применимы самые разные арифметические операции.

Приведение дроби к общему знаменателю

Например, необходимо сравнить дроби 3/4 и 4/5.

Чтобы решить задачу, сначала найдем наименьший общий знаменатель, т.е. наименьшее число, которое делится без остатка на каждый из знаменателей дробей

Наименьший общий знаменатель(4,5) = 20

Затем знаменатель обоих дробей приводится к наименьшему общему знаменателю

Ответ: 15/20 < 16/20

Сложение и вычитание дробей

Если необходимо посчитать сумму двух дробей, их сначала приводят к общему знаменателю, затем складывают числители, при этом знаменатель останется без изменений. Разность дробей считается аналогичным образом, различие лишь в том, что числители вычитаются.

Например, необходимо найти сумму дробей 1/2 и 1/3

Читайте также:  Как узнать менингит

Ответ: 5/6

Теперь найдем разность дробей 1/2 и 1/4

Ответ: 1/4

Умножение и деление дробей

Тут решение дробей несложное, здесь все достаточно просто:

  • Умножение — числители и знаменатели дробей перемножаются между собой;
  • Деление — сперва получаем дробь, обратную второй дроби, т.е. меняем местами ее числитель и знаменатель, после чего полученные дроби перемножаем.

Например:

На этом о том, как решать дроби, всё. Если у вас остались какие то вопросы по решению дробей, что то непонятно, то пишите в комментарии и мы обязательно вам ответим.

Для закрепления материала рекомендуем также посмотреть наше видео:

Также рекомендуем к использованию наш онлайн калькулятор дробей! В нем вы можете посмотреть, как строить решение, на собственных примерах.

Если вы учитель , то возможно скачать презентацию для начальной школы (http://school-box.ru/nachalnaya-shkola/prezentazii-po-matematike.html) будет вам кстати.

Источник: http://reshit.ru/kak_reshat_drobi

Калькулятор дробей онлайн: деление, умножение, вычитание и сложение обыкновенных дробей

Калькулятор предназначен для решения простых дробей и дробей с целыми числами (смешанных). В будущем, планируется внедрение функции решения десятичных дробей, но в данный момент она отсутствует.

Для начала работы с дробным калькулятором необходимо понять очень простой принцип ввода данных. Все целые числа вводятся с помощью больших кнопок, расположенных слева. Все числители вводятся с помощью маленьких белых кнопок, расположенных в правом верхнем блоке цифр.

Все знаменатели, соответственно, вводятся путем нажатия на кнопки в правом нижнем углу.

Данный способ ввода данных является в некотором роде инновационным, поскольку четко разграничивает целое, числитель и знаменатель, что облегчает вычисления, экономит время и делает взаимодействие с приложением более эффективным.

Допустим, вам требуется сложить квадратный корень из двух пятых и одну целую две девятых в шестой степени. Начните вводить пример с кнопки корня. После этого нажмите на цифру 2 в области числителя и на цифру пять в области знаменателя. Первое слагаемое готово.

Теперь нажмите на знак «+» — это действие сложения. Далее введите целое число один на основной клавиатуре, потом число два в области числителя и девять в области знаменателя. Затем, нажмите на кнопку степени «^», после чего на цифру шесть на основной клавиатуре.

В результате, получится готовый пример:

Теперь нажмите на кнопку равно и получите результат калькуляции. В примере выше проиллюстрирован практически весь арсенал возможностей калькулятора дробей.

Точно таким же образом, вы можете осуществлять умножение, деление и вычитание дробей, как простых, так и алгебраических, с одинаковыми и разными знаменателями, целыми числами и т.д.

Также, калькулятор может вычислить проценты от дробей, что требуется не так часто, но тем не менее очень важно для решения многих актуальных задач.

Если вам требуется сделать положительное число отрицательным, то сначала введите число, а потом нажмите на кнопку «+/-». После этого число или дробь автоматически обернется в скобки с отрицательным значением или наоборот (в зависимости от изначального статуса числа).

Если необходимо удалить число, числитель или знаменатель, то воспользуйтесь соответствующей стрелкой Backspace, которая есть в блоке и числителя и знаменателя.

Стрелки работают одинаково и по очереди стирают числа или знаки, находящиеся на дисплее калькулятора.

Использовать калькулятор дробей онлайн можно не только с помощью компьютерной мыши, но и с помощью клавиатуры. Здесь логика очень проста:

  1. Все целые числа вводятся как обычно, нажатиями на клавиши чисел.
  2. Все числители вводятся с добавлением клавиши CTRL (например, CTRL+1).
  3. Все знаменатели вводятся с добавлением клавиши ALT (например, ALT+2).

Действия умножения, деления, сложения и вычитания так же инициируются соответствующими кнопками клавиатуры, если они есть (обычно располагаются в правой части, в так называемой области Numpad).

Удаление производится нажатием на клавишу Backspace. Действие очистки (красная кнопка «C») вызывается нажатием на клавишу «C». Квадратный корень – нажатием на соседнюю клавишу «V» .

Удаление производится нажатием на клавишу Backspace.

Зачем нужен калькулятор дробей онлайн?

Калькулятор дробей онлайн предназначен для решения обыкновенных и смешанных дробей (с целыми числами). Решение дробей часто требуется школьникам и студентам, а также инженерам и аспирантам.

Наш калькулятор предоставляет возможность производить с дробями следующие действия: деление дробей, умножение дробей, сложение дробей и вычитание дробей.

Также, калькулятор умеет работать с корнями и степенями, а еще с отрицательными числами, благодаря чему он многократно превосходит аналогичные онлайн приложения.

Калькулятор простых дробей онлайн поможет вам решить примеры с дробями и при этом вам не надо беспокоиться о том, как предварительно сократить дробь. Здесь это сделается автоматически, т.к. приложение само вычисляет общий знаменатель и выдает вам готовый результат на экран.

В чем преимущества такого способа решения дробей?

Калькулятор поддерживает работу со скобками, что позволяет решать дроби даже в сложных математических примерах.

В частности, действия со скобками часто требуются при вычислении алгебраических дробей или отрицательных дробей, над которыми постоянно приходится корпеть всем школьникам средних классов.

Дополнительно, вы можете использовать этот калькулятор для сокращения дробей или решения дробей с разными знаменателями. Более того, в отличии от многих других бесплатных сервисов, данный калькулятор умеет работать с двумя, тремя, четырьмя и вообще с любым количеством дробей и чисел.

Калькулятор обыкновенных дробей полностью бесплатный и не требует регистрации. Вы можете использовать его в любое время дня и ночи.

Работать можно с помощью мыши или прямо с клавиатуры (это касается как чисел, так и действий).

Мы постарались реализовать максимально удобный интерфейс дробных вычислений, благодаря чему сложные математические калькуляции превратятся для вас в одно удовольствие! 🙂

Источник: https://drobster.ru/

Вычитание дробей

При вычитании дробей, как и при сложении, могут встретиться несколько случаев.

Вычитание дробей с одинаковыми знаменателями

При вычитании дробей с одинаковыми знаменателями от числителя уменьшаемого (первой дроби) отнимают числитель вычитаемого (второй дроби), а знаменатель оставляют прежним.

Пример.

Запомните!

Прежде чем записать конечный ответ, проверьте, нельзя ли сократить полученную дробь.

В буквенном виде правило вычитания дробей с одинаковыми знаменателями записывают так:

Вычитание правильной дроби из единицы

Когда нужно вычесть из единицы правильную дробь, единицу представляют в виде неправильной дроби, знаменатель которой, равен знаменателю вычитаемой дроби.

Пример.

Знаменатель вычитаемой дроби равен 7, значит, единицу представляют как неправильную дробь и вычитают по правилу вычитания дробей с одинаковыми знаменателями.

Вычитание правильной дроби из целого числа

Чтобы из целого числа вычесть правильную дробь нужно представить это натуральное число в виде смешанного числа.

Для этого занимаем единицу в натуральном числе и представляем её в виде неправильной дроби, знаменатель которой равен знаменателю вычитаемой дроби.

Пример.

В примере единицу мы заменили неправильной дробью и вместо 3 записали смешанное число и от дробной части отняли дробь.

Вычитание смешанных чисел

При вычитании смешанных чисел отдельно из целой части вычитают целую часть, а из дробной части вычитают дробную часть.

При подобных расчётах могут встретиться разные случаи.

Первый случай вычитания смешанных чисел

У дробных частей одинаковые знаменатели и числитель дробной части уменьшаемого (из чего вычитаем) больше или равен числителю дробной части вычитаемого (что вычитаем).

Пример.

Второй случай вычитания смешанных чисел

У дробных частей разные знаменатели.

В этом случае вначале нужно привести к общему знаменателю дробные части, а затем выполнить вычитание целой части из целой, а дробной из дробной.

Пример.

Третий случай вычитания смешанных чисел

Дробная часть уменьшаемого меньше дробной части вычитаемого.

Пример.

Так как у дробных частей разные знаменатели, то как и во втором случае, вначале приведём обыкновенные дроби к общему знаменателю.

Числитель дробной части уменьшаемого меньше числителя дробной части вычитаемого.

3 < 14

Поэтому, вспомнив вычитание правильной дроби из целого числа, займём единицу из целой части и представим эту единицу в виде неправильной дроби с одинаковым знаменателем и числителем равным 18.

Сложим полученную неправильную дробь и дробную часть уменьшаемого и получим:

Все рассмотренные случаи можно описать с помощью правил вычитания смешанных чисел.

  • Привести дробные части уменьшаемого и вычитаемого к наименьшему общему знаменателю.
  • Если дробная часть уменьшаемого меньше дробной части вычитаемого, то занимаем у целой части уменьшаемого единицу. Эту единицу превращаем в неправильную дробь с одинаковым числителем и знаменателем равными наименьшему общему знаменателю.
  • Прибавляем полученную неправильную дробь к дробной части уменьшаемого.
  • Вычитаем из целой части целую, а из дробной — дробную.
  • Проверяем, нельзя ли сократить и выделить целую часть в конечной дроби.

Источник: http://math-prosto.ru/?page=pages%2Fdrob%2Fsubtraction_drobs.php

Сложение и вычитание дробей с разными знаменателями

Складывать и вычитать дроби с разными знаменателями можно только тогда, когда в процессе вычисления дроби приведены к одному общему знаменателю.

Общий знаменатель нескольких дробей — это НОК (наименьшее общее кратное) натуральных чисел, являющихся знаменателями заданных дробей.

К числителям заданных дробей нужно поставить дополнительные множители, равные отношению НОК и соответствующего знаменателя.

Числители заданных дробей умножаются на свои дополнительные множители, получаются числители дробей с единым общим знаменателем. Знаки действий («+» или «-») в записи дробей, приводимых к общему знаменателю, сохраняются перед каждой дробью. У дробей с общим знаменателем знаки действий сохраняются перед каждым приведенным числителем.

Только теперь можно сложить или вычесть числители и подписать под результатом общий знаменатель.

Внимание! Если в результирующей дроби у числителя и знаменателя есть общие множители, то дробь надо сократить. Неправильную дробь желательно перевести в смешанную дробь. Оставить результат сложения или вычитания, не сократив дробь, где это возможно, — это неоконченное решение примера!

Читайте также:  Бывает ли температура при сотрясении мозга

Сложение и вычитание дробей с разными знаменателями. Правило. Чтобы сложить или вычесть дроби с разными знаменателями, нужно их сначала привести к наименьшему общему знаменателю, а потом производить действия сложения или вычитания как с дробями с одинаковыми знаменателями.

Порядок действий при сложении и вычитании дробей с разными знаменателями

  1. найти НОК всех знаменателей;
  2. проставить к каждой дроби дополнительные множители;
  3. умножить каждый числитель на дополнительный множитель;
  4. полученные произведения взять числителями, подписав под каждой дробью общий знаменатель;
  5. произвести сложение или вычитание числителей дробей, подписав под суммой или разностью общий знаменатель.

Так же производится сложение и вычитание дробей при наличии в числителе букв.

Например:

Запись опубликована в рубрике Математика с метками вычитание, дробь, знаменатель, сложение. Добавьте в закладки постоянную ссылку.

Источник: http://shkolo.ru/slozhenie-i-vyichitanie-drobey-s-raznyimi-znamenatelyami/

Как решать примеры с дробями

Примеры с дробями — один из основных элементов математики. Существует много разных типов уравнений с дробями. Ниже приведена подробная инструкция по решению примеров такого типа.

1

Как решать примеры с дробями — общие правила

Для решения примеров с дробями любых типов, будь то сложение, вычитание, умножение или деление, необходимо знать основные правила:

  • Для того чтобы сложить дробные выражения с одинаковым знаменателем (знаменатель — число, находящееся в нижней части дроби, числитель — в верхней), нужно сложить их числители, а знаменатель оставить тем же.
  • Для того чтобы вычесть от одного дробного выражения второе (с одинаковым знаменателем), нужно вычесть их числители, а знаменатель оставить тем же.
  • Для того чтобы сложить или вычесть дробные выражения с разными знаменателями, нужно найти наименьший общий знаменатель.
  • Для того чтобы найти дробное произведение, нужно перемножить числители и знаменатели, при этом, если есть возможность, сократить.
  • Для того чтобы разделить дробь на дробь, нужно умножить первую дробь на перевернутую вторую.

2

Как решать примеры с дробями — практика

Правило 1, пример 1:

Вычислить 3/4 +1/4.

Решение:

Согласно правилу 1, если у дробей двух (или больше) одинаковый знаменатель, нужно просто сложить их числители. Получим: 3/4 + 1/4 = 4/4. Если у дроби числитель и знаменатель одинаковы, такая дробь будет равна 1.

Ответ: 3/4 + 1/4 = 4/4 = 1.

Правило 2, пример 1:

Вычислить: 3/4 — 1/4

Пользуясь правилом номер 2, для решения этого уравнения нужно от 3 отнять 1, а знаменатель оставить тем же. Получаем 2/4. Так как два  2 и 4 можно сократить, сокращаем и получаем 1/2.

Ответ: 3/4 — 1/4 = 2/4 = 1/2.

Правило 3, Пример 1

Вычислить: 3/4 + 1/6

Решение: Пользуясь 3-м правилом, находим наименьший общий знаменатель. Наименьшим общим знаменателем называется такое число, которое делится на знаменатели всех дробных выражений примера. Таким образом, нам нужно найти такое минимальное число, которое будет делиться и на 4, и на 6. Таким числом является 12.

Записываем в качестве знаменателя 12. 12 делим на знаменатель первой дроби, получаем 3, умножаем на 3, записываем в числителе 3*3 и знак +. 12 делим на знаменатель второй дроби, получаем 2, 2 умножаем на 1, записываем в числителе 2*1.

Итак, получилась новая дробь со знаменателем, равным 12 и числителем, равным 3*3+2*1=11. 11/12.

Ответ: 11/12

Правило 3, Пример 2:

Источник: http://SovetClub.ru/kak-reshat-primery-s-drobyami

Калькулятор онлайн — Сложение, сокращение, умножение, вычитание неправильных числовых дробей (с подробным решением)

С помощью данного калькулятора онлайн вы можете умножить, вычесть, сложить и сократить числовые дроби с разными знаменателями.

Программа работает с правильными, неправильными и смешанными числовыми дробями.

Данная программа (калькулятор онлайн) умеет: — выполнять сложение смешанных дробей с разными знаменателями — выполнять вычетание смешанных дробей с разными знаменателями — выполнять умножение смешанных дробей с разными знаменателями — приводить дроби к общему знаменателю — преобразовывать смешанные дроби в неправильные — сокращать дроби

Также можно ввести не выражение с дробями, а одну единственную дробь.
В этом случае дробь будет сокращена и из результата выделена целая часть.

Калькулятор онлайн для вычисления выражений с числовыми дробями не просто даёт ответ задачи, он приводит подробное решение с пояснениями, т.е. отображает процесс нахождения решения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре.

А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода выражений с числовыми дробями, рекомендуем с ними ознакомиться.

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать. Возможно у вас включен AdBlock.

В этом случае отключите его и обновите страницу.

Если нам нужно разделить 497 на 4, то при делении мы увидим, что 497 не делится на 4 нацело, т.е. остаётся остаток от деления. В таких случаях говорят, что выполнено деление с остатком, и решение записывают в таком виде:
497 : 4 = 124 (1 остаток).

Компоненты деления в левой части равенства называют так же, как при делении без остатка: 497 — делимое, 4 — делитель. Результат деления при делении с остатком называют неполным частным. В нашем случае это число 124.

И, наконец, последний компонент, которого нет в обычном делении, — остаток. В тех случаях, когда остатка нет, говорят, что одно число разделилось на другое без остатка, или нацело. Считают, что при таком делении остаток равен нулю.

В нашем случае остаток равен 1.

Остаток всегда меньше делителя.

Проверку при делении можно сделать умножением. Если, например, имеется равенство 64 : 32 = 2, то проверку можно сделать так: 64 = 32 * 2.

Часто в случаях, когда выполняется деление с остатком, удобно использовать равенство
а = b * n + r ,
где а — делимое, b — делитель, n — неполное частное, r — остаток.

Частное от деления натуральных чисел можно записать в виде дроби.

Числитель дроби — это делимое, а знаменатель — делитель.

Поскольку числитель дроби — это делимое, а знаменатель — делитель, считают, что черта дроби означает действие деление. Иногда бывает удобно записывать деление в виде дроби, не используя знак «:».

Частное от деления натуральных чисел m и n можно записать в виде дроби, где числитель m — делимое, а знаменатель п — делитель:

Верны следующие правила:

Чтобы получить дробь, надо единицу разделить на n равных частей (долей) и взять m таких частей.

Чтобы получить дробь, надо число m разделить на число n.

Чтобы найти часть от целого, надо число, соответствующее целому, разделить на знаменатель и результат умножить на числитель дроби, которая выражает эту часть.

Чтобы найти целое по его части, надо число, соответствующее этой части, разделить на числитель и результат умножить на знаменатель дроби, которая выражает эту часть.

Если и числитель, и знаменатель дроби умножить на одно и то же число (кроме нуля), величина дроби не изменится:

Если и числитель, и знаменатель дроби разделить на одно и то же число (кроме нуля), величина дроби не изменится:

Это свойство называют основным свойством дроби.

Два последних преобразования называют сокращением дроби.

Если дроби нужно представить в виде дробей с одним и тем же знаменателем, то такое действие называют приведением дробей к общему знаменателю.

Вы уже знаете, что дробь можно получить, если разделить целое на равные части и взять несколько таких частей. Например, дробьозначает три четвёртых доли единицы. Во многих задачах предыдущего параграфа обыкновенные дроби использовались для обозначения части целого.

Здравый смысл подсказывает, что часть всегда должна быть меньше целого, но как тогда быть с такими дробями, как, например,или? Ясно, что это уже не часть единицы. Наверное, поэтому такие дроби, у которых числитель больше знаменателя или равен ему, называют неправильными дробями. Остальные дроби, т. е.

дроби, у которых числитель меньше знаменателя, называют правильными дробями.

Как вы знаете, любую обыкновенную дробь, и правильную, и неправильную, можно рассматривать как результат деления числителя на знаменатель. Поэтому в математике, в отличие от обычного языка, термин «неправильная дробь» означает не то, что мы что-то сделали неправильно, а только то, что у этой дроби числитель больше знаменателя или равен ему.

Если число состоит из целой части и дроби, то такие дроби называются смешанными.

Например:
: 1 — целая часть, а— дробная часть.

Если числитель дробиделится на натуральное число n, то, чтобы разделить эту дробь на n, надо её числитель разделить на это число:

Если числитель дробине делится на натуральное число n, то, чтобы разделить эту дробь на n, надо её знаменатель умножить на это число:

Заметим, что второе правило справедливо и в том случае, когда числитель делится на n. Поэтому мы можем его применять тогда, когда трудно с первого взгляда определить, делится числитель дроби на n или нет.

С дробными числами, как и с натуральными числами, можно выполнять арифметические действия. Рассмотрим сначала сложение дробей. Легко сложить дроби с одинаковыми знаменателями. Найдем, например, суммуи. Легко понять, что

Чтобы сложить дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить прежним.

Используя буквы, правило сложения дробей с одинаковыми знаменателями можно записать так:

Если требуется сложить дроби с разными знаменателями, то их предварительно следует привести к общему знаменателю. Например:

Для дробей, как и для натуральных чисел, справедливы переместительное и сочетательное свойства сложения.

Такие записи, как, называют смешанными дробями. При этом число 2 называют целой частью смешанной дроби, а число— ее дробной частью. Записьчитают так: «две и две трети».

При делении числа 8 на число 3 можно получить два ответа:и. Они выражают одно и то же дробное число, т.е

Таким образом, неправильная дробьпредставлена в виде смешанной дроби. В таких случаях говорят, что из неправильной дроби выделили целую часть.

Вычитание дробных чисел, как и натуральных, определяется на основе действия сложения: вычесть из одного числа другое — это значит найти такое число, которое при сложении со вторым дает первое. Например:
так как

Правило вычитания дробей с одинаковыми знаменателями похоже на правило сложения таких дробей:
чтобы найти разность дробей с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй, а знаменатель оставить прежним.

С помощью букв это правило записывается так:

Чтобы умножить дробь на дробь, нужно перемножить их числители и знаменатели и первое произведение записать числителем, а второе — знаменателем.

С помощью букв правило умножения дробей можно записать так:

Пользуясь сформулированным правилом, молено умножать дробь на натуральное число, на смешанную дробь, а также перемножать смешанные дроби. Для этого нужно натуральное число записать в виде дроби со знаменателем 1, смешанную дробь — в виде неправильной дроби.

Результат умножения надо упрощать (если это возможно), сокращая дробь и выделяя целую часть неправильной дроби.

Для дробей, как и для натуральных чисел, справедливы переместительное и сочетательное свойства умножения, а также распределительное свойство умножения относительно сложения.

Возьмем дробьи «перевернем» ее, поменяв местами числитель и знаменатель. Получим дробь. Эту дробь называют обратной дроби.

Если мы теперь «перевернем» дробь, то получим исходную дробь. Поэтому такие дроби, какиназывают взаимно обратными.

Взаимно обратными являются, например, дробии,и.

С помощью букв взаимно обратные дроби можно записать так:и

Понятно, что произведение взаимно обратных дробей равно 1. Например:

Используя взаимно обратные дроби, можно деление дробей свести к умножению.

Правило деления дроби на дробь:
чтобы разделить одну дробь на другую, нужно делимое умножить на дробь, обратную делителю.

Используя буквы, правило деления дробей можно записать так:

Если делимое или делитель является натуральным числом или смешанной дробью, то, для того чтобы воспользоваться правилом деления дробей, его надо предварительно представить в виде неправильной дроби.

Источник: http://www.mathsolution.ru/math-task/frac-calc-exp

Как вычислять дроби

Принято разделять обыкновенные и десятичные дроби, знакомство с которыми начинается еще в средней школе. В настоящее время нет такой области знаний, где не применялось бы это понятие.

Даже в истории мы говорим первая четверть 17 века, и все сразу понимают, что имеются ввиду 1600-1625 года.

Также часто приходится сталкиваться с элементарными действиями над дробями, а также их преобразованием из одного вида в другой.

Приведение дробей к общему знаменателю является, пожалуй, наиболее важным действием над обыкновенными дробями. Это основа проведения абсолютно всех вычислений. Итак, допустим есть две дроби a/b и c/d. Тогда, для того чтобы привести их к общему знаменателю, нужно найти наименьшее общее кратное (М) чисел b и d, и далее умножить числитель первой дроби на (М/b), а числитель второй на (M/d).

Сравнение дробей, еще одна немаловажная задача. Для того чтобы это сделать, приведите заданные простые дроби к общему знаменателю и потом сравните числители, чей числитель окажется больше, та дробь и больше.

Для того чтобы выполнить сложение или вычитание обыкновенных дробей, нужно привести их к общему знаменателю, а после произвести нужное математическое действие с числителями этих дробей.

Знаменатель же остается без изменения. Допустим нужно из a/b вычесть c/d.

Для этого требуется найти наименьшее общее кратное M чисел b и d, и после вычесть из одного числителя другой, не меняя при этом знаменатель: (a*(M/b)-(c*(M/d))/M

Достаточно просто умножить одну дробь на другую, для этого следует просто перемножить их числители и знаменатели:
(a/b)*(c/d)=(a*c)/(b*d)

Чтобы разделить одну дробь на другую, нужно дробь делимого умножить на дробь обратную делителю. (a/b)/(c/d)=(a*d)/(b*c)
Стоить напомнить, что для того чтобы получить обратную дробь, нужно числитель и знаменатель поменять местами.

Для того чтобы из обыкновенной дроби перейти к десятичной, нужно числитель поделить на знаменатель. При этом результат может быть как конечным числом так и бесконечным.

Если из десятичной дроби нужно перейти к обыкновенной, то разложите ваше число на целую час и дробную, представляя последнюю в виде натурального числа деленного на десять в соответствующей степени.

Источник: http://dokak.ru/matematika/82479-kak-vychisljat-drobi.html

online fractions calculator

The Online Fraction Calculator is a special form on a web-page where you can enter data for calculation and get an instant answer with a detailed solution.

The Calculator helps you add, subtract, divide, and multiply all types of fractions. Our online service was created to make your life easier.

All you have to do is enter data in appropriate boxes, press the [Calculate] button and get an answer.

Our Online Fraction Calculator has a number of advantages over its counterparts. Its friendly interface makes it suitable even for an inexperienced fractions in her grandchildren's homework.

First, you need to identify the type of fraction. Here's a prompt for those who don't remember much from school: a mixed fraction consists of a whole number and a fraction, i.e.

it is the sum of the whole number and the fractional part. A common fraction is a fraction without a whole number.

Another important point is that any mixed fraction can be converted to an improper common fraction.

Our Online Fraction Calculator helps you perform operations with both proper and improper fractions. In proper fractions, the numerator (the top number) is less than the denominator (the bottom number). In improper fractions, the numerator is greater than the denominator.

In our calculator, you can enter both positive and negative fractions. To make a fraction negative, press the [+/-] button under it.

This basic knowledge of math should enable you to use our Online Fraction Calculator for any calculations with fractions. You only enter your data, select an operation, press the [Calculate] button, and get an accurate answer with a detailed solution.

Источник: http://onlinefractionscalculator.com/

Калькулятор дробей

Калькулятор дробей от MiroCalc.com позволяет проводить все основные математические операции с дробями: сложение, вычитание, умножение и деление.

Мы старались сделать максимально удобный интерфейс, поэтому для указания дроби Вам необходимо просто ввести в соответствующее поле конструкцию вида 1/5 (для дроби «Одна пятая») или 3 4/7 (для дроби «Три целых и четыре седьмых»). Обратите внимание на необходимость указания пробела между значениями целой и дробной части.

О калькуляторе дробей онлайн

Представляем вашему вниманию калькулятор дробей онлайн от MiroCalc.com. Это устройство будет полезно школьникам, студентам, представителям технических профессий и всем тем, кому по той или иной причине приходится при расчетах сталкиваться с дробями.

Наш калькулятор позволяет мгновенно выполнять основные математические операции с дробными и смешанными числами, с его помощью вы сможете легко сложить, вычесть, разделить и умножить дроби.

Для расчетов дроби вводятся в следующем формате: 3/9 (для дроби «три девятых»), 5 4/5 (для дроби «пять целых четыре пятых»). При работе со смешанными числами, необходимо разделить пробелом целую и дробную часть.

При расчетах с десятичными дробями их необходимо предварительно перевести в обыкновенные и представить в нужном формате. К примеру, десятичную дробь 3, 75 записываем как 3 75/100, не забывая о пробеле между дробной и целой частью.

Произвести решение дробей онлайн калькулятором очень просто, но нелишним будет перед выполнением нужных вам математических действий вспомнить основные сведения о дробях и правила работы с дробными числами:

Обыкновенная дробь – это часть единицы или несколько ее частей. Знаменатель дроби указывает, на какое количество равных частей разделили единицу, а числитель ­– сколько таких равных частей было взято.

Из двух дробей с равными знаменателями большей является та, у которой числитель больше.

Из двух дробей с равными числителями большей является та, у которой знаменатель меньше.

Для сравнения дробей, имеющих разные числители и знаменатели, необходимо привести сравниваемые числа к общему знаменателю.

У правильной дроби знаменатель больше числителя.

У неправильной дроби числитель больше знаменателя. Из такой дроби можно выделить целую часть.

Если числитель дроби делится на знаменатель, то дробь равна числу, частному от деления.

У неправильной дроби числитель делится на знаменатель с остатком и результат представляется смешанным числом.

Смешанное число можно обратить в обыкновенную дробь. Для этого целую часть умножают на знаменатель, к полученному числу прибавляют числитель. Результат записывают в числитель обыкновенной дроби, а знаменатель оставляют прежним.

Наш калькулятор дробей онлайн может быть размещен на вашем сайте. Для этого достаточно получить специальный код.

Источник: http://MiroCalc.com/calculator_drobey.php

Ссылка на основную публикацию
Adblock
detector