Как складывать квадратные корни

Как складывать квадратные корни

Как складывать квадратные корни

Квадратным корнем из числа X называется число A, которое в процессе умножения самого на себя (A * A) может дать число X
Т.е. A * A = A2 = X, и √X = A.

Над квадратными корнями (√x), как и над другими числами, можно выполнять такие арифметические операции, как вычитание и сложение. Для вычитания и сложения корней их нужно соединить посредством знаков, соответствующих этим действиям (например √x — √y).

А потом привести корни к их простейшей форме — если между ними окажутся подобные, необходимо сделать приведение. Оно заключается в том, что берутся коэффициенты подобных членов со знаками соответствующих членов, далее заключаются в скобки и выводится общий корень за скобками множителя.

Коэффициент, который мы получили, упрощается по обычным правилам.

Шаг 1. Извлечение квадратных корней

Во-первых, для сложения квадратных корней сначала нужно эти корни извлечь. Это можно будет сделать в том случае, если числа под знаком корня будут полными квадратами. Для примера возьмем заданное выражение √4 + √9.

Первое число 4 является квадратом числа 2. Второе число 9 является квадратом числа 3. Таким образом, можно получить следующее равенство: √4 + √9 = 2 + 3 = 5
Все, пример решен.

Но так просто бывает далеко не всегда.

Шаг 2. Вынесение множителя числа из-под корня

Если полных квадратов нет под знаком корня, можно попробовать вынести множитель числа из-под знака корня. Для примера возьмём выражение √24 + √54.

Раскладываем числа на множители:
24 = 2 * 2 * 2 * 3,
54 = 2 * 3 * 3 * 3.

В числе 24 мы имеем множитель 4, его можно вынести из-под знака квадратного корня. В числе 54 мы имеем множитель 9.

Получаем равенство:
√24 + √54 = √(4 * 6) + √(9 * 6) = 2 * √6 + 3 * √6 = 5 * √6.

Рассматривая данный пример, мы получаем вынос множителя из-под знака корня, тем самым упрощая заданное выражение.

Шаг 3. Сокращение знаменателя

Рассмотрим следующую ситуацию: сумма двух квадратных корней – это знаменатель дроби, например, A / (√a + √b). Теперь перед нами стоит задача «избавиться от иррациональности в знаменателе».

Воспользуемся следующим способом: умножаем числитель и знаменатель дроби на выражение √a — √b.

Формулу сокращённого умножения мы теперь получаем в знаменателе:
(√a + √b) * (√a — √b) = a – b.

Аналогично, если в знаменателе имеется разность корней: √a — √b, числитель и знаменатель дроби умножаем на выражение √a + √b.

Возьмём для примера дробь:
4 / (√3 + √5) = 4 * (√3 — √5) / ( (√3 + √5) * (√3 — √5) ) = 4 * (√3 — √5) / (-2) = 2 * (√5 — √3).

Пример сложного сокращения знаменателя

Теперь будем рассматривать достаточно сложный пример избавления от иррациональности в знаменателе.

Для примера берём дробь: 12 / (√2 + √3 + √5).
Нужно взять её числитель и знаменатель и перемножить на выражение √2 + √3 — √5.

Получаем:

12 / (√2 + √3 + √5) = 12 * (√2 + √3 — √5) / (2 * √6) = 2 * √3 + 3 * √2 — √30.

Шаг 4. Вычисление приблизительного значения на калькуляторе

Если вам требуется только приблизительное значение, это можно сделать на калькуляторе путём подсчёта значения квадратных корней. Отдельно для каждого числа вычисляется значение и записывается с необходимой точностью, которая определяется количеством знаков после запятой. Далее совершаются все требуемые операции, как с обычными числами.

Пример вычисления приблизительного значения

Необходимо вычислить приблизительное значение данного выражения √7 + √5.

В итоге получаем:

√7 + √5 ≈ 2,65 + 2,24 = 4,89.

Обратите внимание: ни при каких условиях не следует производить сложение квадратных корней, как простых чисел, это совершенно недопустимо. То есть, если сложить квадратный корень из пяти и из трёх, у нас не может получиться квадратный корень из восьми.

Полезный совет: если вы решили разложить число на множители, для того, чтобы вывести квадрат из-под знака корня, вам необходимо сделать обратную проверку, то есть перемножить все множители, которые получились в результате вычислений, и в конечном результате этого математического расчёта должно получиться число, которое нам было задано первоначально.

Источник: http://imdiv.com/arts/view-Kak-skladyvat-kvadratnye-korni.html

Как складывать и вычитать квадратные корни

Как складывать и вычитать квадратные корни

Сейчас в школьной программе происходит, что-то не совсем понятно. Одно радует, что в математике все остается неизменной. Работа с корнями, а именно складывание и вычитание не очень сложное действие. Но у некоторых учеников вызывают определенные трудности.<\p>

И в этой статье мы разберем правила, как складывать и вычитать квадратные корни.

Вычитать и складывать квадратные корни можно если срабатывает условие, что у этих корней имеются одинаковые подкоренные выражения. Другими словами, мы можем проводить действия с 2√3 и 4√3, а не с 2√3 и 2√7.

Но можно провести действия по упрощению подкоренного выражения, чтобы потом привести их к корням, которые будут иметь одинаковые подкоренные выражения. И только после этого уже начать складывать или вычитать.

  

Теория складывания и вычитания квадратных корней

Сам принцип очень простой. И составит из трех действий. Нужно упростить подкоренной выражение. Найти получившиеся одинаковые подкоренные выражения и сложить или вычесть корни.

Как упростить подкоренное выражение

Для этого нужно разложить подкоренное число, что бы состояло из двух множителей. Главное условие. Одно из этих чисел должно быть квадратным числом (пример: 25 или 9). После этого действия мы извлекаем корень из данного квадратного числа. И записываем это число перед нашим корнем, а под корнем у нас остается второй множитель.

Например, 6√50 — 2√8 + 5√12

6√50 = 6√(25 x 2) = (6 x 5)√2 = 30√2. Тут мы раскладываем 50 на два множителя 25 и 2. Потом из 25 мы извлекаем квадратный корень (получаем число 5) и выносим его из под корня. Далее 5 умножаем на 6 и получаем 30√2

2√8 = 2√(4 x 2) = (2 x 2)√2 = 4√2. В данном примеры мы 8 раскладываем на два числа 4 и 2. Из 4 извлекаем корень и выносим получившееся число за корень и умножаем его на то число которое было уже за корнем.

5√12 = 5√(4 x 3) = (5 x 2)√3 = 10√3. Тут мы, как и раньше число под корнем раскладываем на два числа 4 и 3. Из 4-х извлекаем корень. Получившееся число выносим за корень и перемножаем его на то число которое было за корнем.  

В итоге мы преобразовали уравнение 6√50 — 2√8 + 5√12 в такой вид 30√2 — 4√2 + 10√3

Подчеркиваем корни у которых одинаковы подкоренные выражения

В нашем примере 30√2 — 4√2 + 10√3 мы выделяем 30√2 и 4√2 Так, как у этих чисел одинаковое подкоренное число 2.
Если в Вашем примере несколько одинаковых подкоренных выражений. Подчеркивайте одинаковые из них разными линиями.

Складываем или вычитаем наши корни

Теперь складываем или вычитаем числа которые имеют одинаковые подкоренные выражения. А то, что под корнем мы оставляем неизменным. Смысл в том, чтобы показать сколько всего корней с определенными подкоренными выражениями есть в заданном уравнении.

Читайте также:  Как переложить деньги с одного телефона на другой

В нашем примере 30√2 — 4√2 + 10√3 мы от 30 отнимаем 4 и получаем 26√2

Ответ в нашем примере будет такой. 26√2 + 10√3

Sabibon — самое интересное в интернете

Источник: http://sabibon.info/15704-kak-skladyvat-i-vychitat-kvadratnye-korni.html

Выделение полного квадрата под корнем

Выделение полного квадрата под корнемСайт репетитора по математике Фельдман Инны Владимировны. Профессиональные услуги репетитора по математике в Москве. Подготовка к ГИА и ЕГЭ, помощь отстающим. 2014-01-14

Главная » СТАТЬИ » АЛГЕБРАИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ » Выделение полного квадрата под корнем

Часто в процессе преобразований или решения уравнений встречаются выражения, содержащие корень под знаком квадратного корня. В большинстве случаев эти выражения можно упростить, выделив полный квадрат под корнем.

Посмотрим, как это делается.

Найти значение выражения:

Упростим первое слагаемое. Предположим, мы можем представить выражениев виде полного квадрата.

(1)

Если слагаемоеилисодержит корень, то при возведении в квадрат этот корень останется в удвоенном произведении. Поэтом приравняв правую и левую части равенства (1), мы получим систему:

Разделим второе уравнение на 2:

То есть произведение чиселиравно

Выражениеможно представить в виде произведения двух множителей двумя способами:

и

или

и

Проверим, в каком случае

— эта пара нам подходит.

Следовательно,

Внимание! Помним, что квадратный корень из квадрата выражения равен модулю этого выражения.

Чтобы раскрыть модуль, выясняем знак подмодульного выражения. Если подмодульное выражение больше нуля, то раскрываем модуль с тем же знаком, а если меньше нуля, то с противоположным.

Упростим второе слагаемое.

Представим подкоренное выражение в виде квадрата разности.

Получим систему:

Разделим второе уравнение на 2:

То есть произведение чиселиравно

Выражениеможно представить в виде произведения двух множителей двумя способами:

и

или

и

Проверим, в каком случае

— эта пара нам не подходит.

— эта пара нам подходит.

Следовательно,- подмодульное выражениеменьше нуля, поэтому мы раскрыли модуль с противоположным знаком.

Итак, после упрощения корней мы получили равенство:

Ответ: 3

Источник: https://ege-ok.ru/2014/01/14/vyidelenie-polnogo-kvadrata-pod-kornem

Корни и степени

Корни и степени

Степенью называется выражение вида .

Здесь  — основание степени,  — показатель степени.

Степень с натуральным показателем

Проще всего определяется степень с натуральным (то есть целым положительным) показателем.

По определению, .

Выражения «возвести в квадрат» и «возвести в куб» нам давно знакомы.
Возвести число в квадрат — значит умножить его само на себя.

.

Возвести число в куб — значит умножить его само на себя три раза.

.

Возвести число в натуральную степень  — значит умножить его само на себя раз:

Степень с целым показателем

Показатель степени может быть не только натуральным (то есть целым положительным), но и равным нулю, а также целым отрицательным.

По определению,

.

Это верно для . Выражение  не определено.

Определим также, что такое степень с целым отрицательным показателем.

Конечно, все это верно для , поскольку на ноль делить нельзя.

Например,

Заметим, что при возведении в минус первую степень дробь переворачивается.

Показатель степени может быть не только целым, но и дробным, то есть рациональным числом. В статье «Числовые множества» мы говорили, что такое рациональные числа. Это числа, которые можно записать в виде дроби , где  — целое,  — натуральное.

Здесь нам понадобится новое понятие — корень -степени. Корни и степени — две взаимосвязанные темы. Начнем с уже знакомого вам арифметического квадратного корня.

Арифметический квадратный корень

Уравнение  имеет два решения:  и .

Это числа, квадрат которых равен .

А как решить уравнение ?

Если мы нарисуем график функции , то увидим, что и у этого уравнения есть два решения, одно из которых положительно, а другое отрицательно.

Но эти решения не являются целыми числами. Более того, они не являются рациональными. Для того чтобы записать эти решения, мы вводим специальный символ квадратного корня.

Арифметический квадратный корень из числа  — это такое неотрицательное число, квадрат которого равен .

Запомните это определение.

Арифметический квадратный корень обозначается .

Например,

Обратите внимание:

1) Квадратный корень можно извлекать только из неотрицательных чисел

2) Выражение всегда неотрицательно. Например, .

Перечислим свойства арифметического квадратного корня:

1.<\p>

2.
3.<\p>

Запомним, что выражение не равно . Легко проверить:

— получился другой ответ.

Кубический корень

Аналогично, кубический корень из  — это такое число, которое при возведении в третью степень дает число .

Например, , так как ;

, так как ;

, так как .

Обратите внимание, что корень третьей степени можно извлекать как из положительных, так и из отрицательных чисел.

Теперь мы можем дать определение корня -ной степени для любого целого .

Корень -ной степени

Корень -ной степени из числа  — это такое число, при возведении которого в -ную степень получается число .

Например,

Заметим, что корень третьей, пятой, девятой — словом, любой нечетной степени, — можно извлекать как из положительных, так и из отрицательных чисел.

Квадратный корень, а также корень четвертой, десятой, в общем, любой четной степени можно извлекать только из неотрицательных чисел.

Итак, — такое число, что . Оказывается, корни можно записывать в виде степеней с рациональным показателем. Это удобно.

По определению,

в общем случае .

Сразу договоримся, что основание степени больше .

Например,

Выражение по определению равно .

При этом также выполняется условие, что больше .

Например,

Запомним правила действий со степенями:

— при перемножении степеней показатели складываются

— при делении степени на степень показатели вычитаются

— при возведении степени в степень показатели перемножаются

Покажем, как применяются эти формулы в заданиях ЕГЭ по математике:

1.<\p>

Внесли все под общий корень, разложили на множители, сократили дробь и извлекли корень.

2.<\p>

3.<\p>

Здесь мы записали корни в виде степеней и использовали формулы действий со степенями.

Источник: http://ege-study.ru/ru/ege/materialy/matematika/korni-i-stepeni/

Как вычитать корни — roujons.ru

Как вычитать корни - roujons.ru

В наше время современных электронных вычислительных машин вычисление корня из числа не представляется сложной задачей. Например, √2704=52, это вам подсчитает любой калькулятор.

К счастью, калькулятор есть не только в Windows, но и в обычном, даже самом простеньком, телефоне.

Правда если вдруг (с малой долей вероятности, вычисление которой, между прочим, включает в себя сложение корней) вы окажитесь без доступных средств, то, увы, придется рассчитывать только на свои мозги.

Тренировка ума никогда не помещает. Особенно для тех, кто не так часто работает с цифрами, а уж тем более с корнями. Сложение и вычитание корней — хорошая разминка для скучающего ума. А еще я покажу поэтапно сложение корней. Примеры выражений могут быть следующие.

Уравнение, которое нужно упростить:

√2+3√48-4×√27+√128

Это иррациональное выражение. Для того чтобы его упростить нужно привести все подкоренные выражения к общему виду. Делаем поэтапно:

Первое число упростить уже нельзя. Переходим ко второму слагаемому.

3√48 раскладываем 48 на множители: 48=2×24 или 48=3×16. Квадратный корень из 24 не является целочисленным, т.е. имеет дробный остаток. Так как нам нужно точное значение, то приблизительные корни нам не подходят. Квадратный корень из 16 равен 4, выноси его из-под знака корня. Получаем: 3×4×√3=12×√3

Следующее выражение у нас является отрицательным, т.е. написано со знаком минус -4×√(27.) Раскладываем 27 на множители. Получаем 27=3×9. Мы не используем дробные множители, потому что из дробей вычислять квадратный корень сложнее. Выносим 9 из-под знака, т.е. вычисляем квадратный корень. Получаем следующее выражение: -4×3×√3 = -12×√3

Следующее слагаемое √128 вычисляем часть, которую можно вынести из-под корня. 128=64×2, где √64=8. Если вам будет легче можно представить это выражение так: √128=√(8^2×2)

Читайте также:  Как сделать греческий костюм

Переписываем выражение с упрощенными слагаемыми:

√2+12×√3-12×√3+8×√2

Теперь складываем числа одним и тем же подкоренным выражением. Нельзя складывать или вычитать выражения с разными подкоренными выражениями. Сложение корней требует соблюдение этого правила.

Ответ получаем следующий:

√2+12√3-12√3+8√2=9√2

√2=1×√2 — надеюсь, то, что в алгебре принято опускать подобные элементы, не станет для вас новостью.

Выражения могут быть представлены не только квадратным корнем, но так же и с кубическим или корнем n-ной степени.

Сложение и вычитание корней с разными показателями степени, но с равнозначным подкоренным выражением, происходит следующим образом:

Если мы имеем выражение вида √a+∛b+∜b, то мы можем упростить это выражение так:

∛b+∜b=12×√b4 +12×√b3

12√b4 +12×√b3=12×√b4 + b3

Мы привели два подобных члена к общему показателю корня. Здесь использовалось свойство корней, которое гласит: если число степени подкоренного выражения и число показателя корня умножить на одно и то же число, то его вычисление останется неизменным.

На заметку: показатели степени складываются только при умножении.

Рассмотрим пример, когда в выражении присутствуют дроби.

5√8-4×√(1/4)+√72-4×√2

Будем решать по этапам:

5√8=5*2√2 — мы выносим из-под корня извлекаемую часть.

— 4√(1/4)=-4 √1/(√4)= — 4 *1/2= — 2

Если в тело корня представлено дробью, то часто этой дроби не измениться, если извлечь квадратный корень из делимого и делителя. В итоге мы получили описанное выше равенство.

√72-4√2=√(36×2)- 4√2=2√2

10√2+2√2-2=12√2-2

Вот и получился ответ.

Главное помнить, что из отрицательных чисел не извлекается корень с четным показателем степени. Если четной степени подкоренное выражение является отрицательным, то выражение является нерешаемым.

Сложение корней возможно только при совпадении подкоренных выражений, так как они являются подобными слагаемыми. То же самое относиться и к разности.

Сложение корней с разными числовыми показателями степени производиться посредством приведения к общей корневой степени обоих слагаемых. Это закон действует так же как приведение к общему знаменателю при сложении или вычитании дробей.

Если в подкоренном выражении имеется число, возведенное в степень, то это выражение можно упростить при условии, что между показателем корня и степени существует общий знаменатель.

Многие эксперты считают, что, посмотрев на нос, можно многое сказать о личности человека. Поэтому при первой встрече обратите внимание на нос незнаком…

Психология

Наверное, найдется очень мало людей, которые бы не любили смотреть фильмы. Однако даже в лучшем кино встречаются ошибки, которые могут заметить зрител…

Фильмы

Вам тоже хочется верить в то, что вы доставляете своему романтическому партнеру удовольствие в постели? По крайней мере, вы не хотите краснеть и извин…

Сексуальность

Все знают, что есть крошечный карман на джинсах, но мало кто задумывался, зачем он может быть нужен. Интересно, что первоначально он был местом для хр…

Одежда

Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл…

Волосы

Если вы хотите помочь излишне эмоциональному человеку и успокоить его, вам нужно изучить новую методику….

Оратоское искусство

Источник: http://roujons.ru/sad-ogorod/kak-vichitat-korni.php

Извлечение квадратного корня из целых чисел

В настоящем параграфе мы выведем правило извлечения квадратного корня из целых чисел. В случае, если данное число не является квадратом целого числа, по этому правилу можно найти приближенный корень с недостатком с точностью до 1.

Извлечение корня из целого числа, меньшего 10000, но большего 100. Пусть надо найти. Так как число меньше 10000, то корень из него меньше 100. С другой стороны, данное число больше 100, значит корень из него больше 10. Но всякое число, которое больше 10 (или равно 10), но меньше 100, имеет две цифры, значит, искомый корень есть сумма:

десятки + единицы,

и поэтому квадрат его должен равняться сумме:

(десятки)2 + 2 * (дес.) * (един.) + (единицы)2.

Сумма эта должна быть наибольшим квадратом, заключающимся в 4082. Так как (десятки)2 составляют сотни, то квадрат десятков надо искать в сотнях данного числа. Сотен в данном числе 40 (мы находим их число, отделив запятой две цифры справа).

Но в 40 заключается несколько целых квадратов: 36, 25, 16, … и др. Возьмем из них наибольший: 36 и допустим, что квадрат десятков корня будет равен именно этому наибольшему квадрату. Тогда число десятков в корне должно быть 6.

Проверим теперь, что всегда число десятков корня равно наибольшему целому корню из числа сотен подкоренного числа. Действительно, в нашем примере число десятков корня не может быть больше 6, так как (7 дес.)2 = 49 сотням, что превосходит 4082. Но оно не может быть и меньше 6, так как 5 дес.

(с единицами) меньше 6 дес., а между тем (6 дес.)2 = 36 сотням, что меньше 4082. А так как мы ищем наибольший целый корень, то не следует брать для корня 5 дес., когда и 6 дес. Оказывается мало. Итак, мы нашли число десятков корня, именно 6.

Пишем эту цифру направо от знака равенства, запомнив, что она означает десятки корня. Возведя ее в квадрат, получим 36 сотен. Вычитаем эти 36 сотен из 40 сотен подкоренного числа и к остатку приписываем число 82:

В числе 482 должна содержаться сумма:

2 * (6 дес.) * (един.) + (единицы)2.

Произведение (6 дес.) * (един.) должно составлять десятки, поэтому удвоенное произведение десятков на единицы надо искать в десятках остатка, то есть в 48 (мы получим число их, отделив в остатке 482 одну цифру справа). Удвоенные десятки корня составляют 12.

Значит, если 12 умножим на единицы корня (которые пока неизвестны), то мы должны получить число, содержащееся в 48. Поэтому разделим 48 на 12.

Для этого влево от остатка проводим вертикальную черту и за ней (отступив от черты на одно место влево для цели, которая сейчас обнаружится) напишем удвоенную первую цифру корня, то есть 12, и на нее разделим 48.

В частном получим 4. Однако заранее нельзя ручаться, что цифру 4 можно принять за единицы корня, так как мы сейчас разделили на 12 все число десятков остатка, тогда как некоторая часть из низ может и не принадлежать удвоенному произведению десятков на единицы, а входить в состав квадрата единиц. Поэтому цифра 4 может оказаться велика.

Читайте также:  Как постирать вязаную шапку

Надо ее испытать. Она, очевидно, будет годиться в том случае, если сумма 2 * (6 дес.) * 4 + 42 окажется не больше остатка 482.

Сумму эту мы можем вычислить сразу таким простым приемом: за вертикальной чертой к удвоенной цифре корня (к 12) приписываем справа цифру 4 (поэтому мы и отступили от черты на одно место) и на нее же умножим полученное число (124 на 4):

Действительно, проводя это умножение, мы умножаем 4 на 4, значит, находим квадрат единицы корня; затем мы умножаем 12 десятков на 4, значит, находим удвоенное произведение десятков корня на единицы. В результате получаем сразу сумму того и другого.

Полученное произведение оказалось 496, что больше остатка 482, значит, цифра 4 велика. Тогда испытаем таким же образом следующую меньшую цифру, 3.

Для этого сотрем цифру 4 и произведение 496, вместо цифры 4 подставим 3 и умножим 123 на 3:Произведение 369 оказалось меньше остатка 482; значит, цифра 3 годится (если бы случилось, что и эта цифра велика, тогда надо было бы испытать следующую меньшую цифру, 2). Напишем цифру 3 в корне направо от цифры десятков.

Последний остаток 113 показывает избыток данного числа над наибольшим целым квадратом, заключающимся в нем. Для проверки возведем в квадрат 63 и к результату прибавим 113:
Так как в сумме получилось данное число 4082, то действие сделано верно.

Примеры.

В четвертом примере при делении 47 десятков остатка на 4 мы получаем в частном 11. Но так как цифра единиц корня не может быть двузначным числом 11 или 10, то надо испытать цифру 9.

В пятом примере после вычитания из первой грани квадрата 8 остаток оказывается равным 0 и следующая грань тоже состоит из нулей. Это показывает, что искомый корень состоит только из 8 десятков, и потому на место единиц надо поставить нуль.

Извлечение корня из целого числа, большего 10000. Пусть требуется найти. Так как подкоренное число превосходит 10000, то корень из него большеи, следовательно, он состоит из трех цифр или более.

Из скольких бы цифр он ни состоял, мы можем его всегда рассматривать как сумму только десятков и единиц. Если, например, корень оказался бы 482, то мы можем его считать за сумму 48 десятков + 2 единицы.

Тогда квадрат корня будет состоять по-прежнему из трех слагаемых:

(десятки)2 + 2 * (дес.) * (един.) + (единицы)2.

Теперь мы можем рассуждать совершенно так же, как и при нахождении(в предыдущем примере).

Разница будет только та, что для нахождения десятков корня из 4082 мы должны были извлечь корень из 40, и это можно было сделать по таблице умножения; теперь же для получения десятковнам придется извлечь корень из 357, что по таблице умножения выполнить нельзя. Но мы можем найтитем приемом, который был описан в предыдущем примере, так как число 357 < 10000:

Наибольший целый корень из 357 равен 18. Значит, вдолжно быть 18 десятков.

Чтобы найти единицы, надо из 3'57'82 вычесть квадрат 18 десятков, для чего достаточно вычесть квадрат 18 из 357 сотен и к остатку снести две последние цифры подкоренного числа. Остаток от вычитания квадрата 18 из 357 у нас уже есть: это 33. Значит, для получения остатка от вычитания квадрата 18 десятков из 3'57'82 достаточно к 33 приписать справа цифры 8 и 2.

Далее поступаем так, как мы поступали при нахождении, а именно: слева от остатка 3382 проводим вертикальную черту и за нею пишем (отступив от черты на одно место) удвоенное число найденных десятков корня, то есть 36 (дважды 18).

В остатке отделяем одну цифру справа и делим число десятков остатка, то есть 338, на 36. В частном получаем 9. Эту цифру испытываем, для чего ее приписываем к 36 справа и на нее же умножаем. Произведение оказалось 3321, что меньше остатка.

Значит, цифра 9 годится, пишем ее в корне.

Вообще, чтобы извлечь квадратный корень из какого угодно целого числа, надо сначала извлечь корень из числа его сотен; если это число больше 100, то придется искать корень из числа сотен этих сотен, то есть из десятков тысяч данного числа; если и это число больше 10000, придется извлекать корень из числа сотен десятков тысяч, то есть из миллионов данного числа, и т. д.

В последнем примере, найдя первую цифру и вычтя квадрат ее, получаем в остатке 0. Сносим следующие две цифры, 5 и 1. Отделив десятки, мы получаем 5 десятков, тогда как найденная удвоенная цифра корня есть 6. Значит, от деления 5 на 6 мы получаем 0. Ставим в корне 0 на втором месте и к остатку сносим следующие две цифры; получаем 5110. Далее продолжаем как обыкновенно.

Правило. Чтобы извлечь квадратный корень из данного целого числа, разбивают его от правой руки к левой на грани, по две цифры в каждой, кроме первой (крайней левой), в которой может быть и одна цифра.

Чтобы найти первую цифру корня, извлекают квадратный корень из первой грани.

Чтобы найти вторую цифру, из первой грани вычитают квадрат первой цифры корня, к остатку сносят вторую грань и число десятков получающегося числа делят на удвоенную первую цифру корня; полученное целое число подвергают испытанию.

Испытание это производится так: за вертикальной чертой (налево от остатка) пишут удвоенное ранее найденное число корня и к нему с правой стороны приписывают испытуемую цифру; получившееся после этой приписки число умножают на испытуемую цифру. Если после умножения получится число, большее остатка, то испытуемая цифра не годится и надо испытать следующую меньшую цифру.

Следующие цифры корня находятся с помощью того же приема.

Если после снесения грани число десятков получившегося числа окажется меньше делителя, то есть меньше удвоенной найденной части корня, то в корне ставят 0, сносят следующую грань и продолжают действие дальше.

Источник: http://mthm.ru/algebra6/integer-extract

Ссылка на основную публикацию
Adblock
detector